These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


345 related items for PubMed ID: 19269370

  • 1. Functional organization of the S. cerevisiae phosphorylation network.
    Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ.
    Cell; 2009 Mar 06; 136(5):952-63. PubMed ID: 19269370
    [Abstract] [Full Text] [Related]

  • 2. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.
    Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ.
    Nature; 2007 Apr 12; 446(7137):806-10. PubMed ID: 17314980
    [Abstract] [Full Text] [Related]

  • 3. Global control of histone modification by the anaphase-promoting complex.
    Ramaswamy V, Williams JS, Robinson KM, Sopko RL, Schultz MC.
    Mol Cell Biol; 2003 Dec 12; 23(24):9136-49. PubMed ID: 14645525
    [Abstract] [Full Text] [Related]

  • 4. Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways.
    Sacristán-Reviriego A, Martín H, Molina M.
    Fungal Genet Biol; 2015 Apr 12; 77():1-11. PubMed ID: 25736922
    [Abstract] [Full Text] [Related]

  • 5. Glucose and nitrogen regulate the switch from histone deacetylation to acetylation for expression of early meiosis-specific genes in budding yeast.
    Pnueli L, Edry I, Cohen M, Kassir Y.
    Mol Cell Biol; 2004 Jun 12; 24(12):5197-208. PubMed ID: 15169885
    [Abstract] [Full Text] [Related]

  • 6. Investigating the Network Basis of Negative Genetic Interactions in Saccharomyces cerevisiae with Integrated Biological Networks and Triplet Motif Analysis.
    Ignatius Pang CN, Goel A, Wilkins MR.
    J Proteome Res; 2018 Mar 02; 17(3):1014-1030. PubMed ID: 29392949
    [Abstract] [Full Text] [Related]

  • 7. Investigation of Proteomic and Phosphoproteomic Responses to Signaling Network Perturbations Reveals Functional Pathway Organizations in Yeast.
    Li J, Paulo JA, Nusinow DP, Huttlin EL, Gygi SP.
    Cell Rep; 2019 Nov 12; 29(7):2092-2104.e4. PubMed ID: 31722220
    [Abstract] [Full Text] [Related]

  • 8. Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling.
    Oh S, Lee J, Swanson SK, Florens L, Washburn MP, Workman JL.
    Elife; 2020 Dec 29; 9():. PubMed ID: 33372657
    [Abstract] [Full Text] [Related]

  • 9. Improved functional overview of protein complexes using inferred epistatic relationships.
    Ryan C, Greene D, Guénolé A, van Attikum H, Krogan NJ, Cunningham P, Cagney G.
    BMC Syst Biol; 2011 May 23; 5():80. PubMed ID: 21605386
    [Abstract] [Full Text] [Related]

  • 10. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7.
    Bardwell L, Cook JG, Chang EC, Cairns BR, Thorner J.
    Mol Cell Biol; 1996 Jul 23; 16(7):3637-50. PubMed ID: 8668180
    [Abstract] [Full Text] [Related]

  • 11. Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae.
    Baker SP, Phillips J, Anderson S, Qiu Q, Shabanowitz J, Smith MM, Yates JR, Hunt DF, Grant PA.
    Nat Cell Biol; 2010 Mar 23; 12(3):294-8. PubMed ID: 20139971
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Identification of a novel Ser/Thr protein phosphatase Ppq1 as a negative regulator of mating MAP kinase pathway in Saccharomyces cerevisiae.
    Shim E, Park SH.
    Biochem Biophys Res Commun; 2014 Jan 03; 443(1):252-8. PubMed ID: 24309106
    [Abstract] [Full Text] [Related]

  • 15. Cell signaling. Signaling through cooperation.
    Levy ED, Landry CR, Michnick SW.
    Science; 2010 May 21; 328(5981):983-4. PubMed ID: 20489011
    [No Abstract] [Full Text] [Related]

  • 16. Histone chaperones Nap1 and Vps75 regulate histone acetylation during transcription elongation.
    Xue YM, Kowalska AK, Grabowska K, Przybyt K, Cichewicz MA, Del Rosario BC, Pemberton LF.
    Mol Cell Biol; 2013 Apr 21; 33(8):1645-56. PubMed ID: 23401858
    [Abstract] [Full Text] [Related]

  • 17. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases.
    Zhou Z, Gartner A, Cade R, Ammerer G, Errede B.
    Mol Cell Biol; 1993 Apr 21; 13(4):2069-80. PubMed ID: 8455599
    [Abstract] [Full Text] [Related]

  • 18. A two-component system that regulates an osmosensing MAP kinase cascade in yeast.
    Maeda T, Wurgler-Murphy SM, Saito H.
    Nature; 1994 May 19; 369(6477):242-5. PubMed ID: 8183345
    [Abstract] [Full Text] [Related]

  • 19. The MAP kinase Fus3 associates with and phosphorylates the upstream signaling component Ste5.
    Kranz JE, Satterberg B, Elion EA.
    Genes Dev; 1994 Feb 01; 8(3):313-27. PubMed ID: 8314085
    [Abstract] [Full Text] [Related]

  • 20. Proteomics. Protein chips map yeast kinase network.
    Service RF.
    Science; 2005 Mar 25; 307(5717):1854-5. PubMed ID: 15790818
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.