These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


235 related items for PubMed ID: 19275163

  • 1. Novel high-throughput assay for antioxidant capacity against superoxide anion.
    Zhang L, Huang D, Kondo M, Fan E, Ji H, Kou Y, Ou B.
    J Agric Food Chem; 2009 Apr 08; 57(7):2661-7. PubMed ID: 19275163
    [Abstract] [Full Text] [Related]

  • 2. Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'--1--(phenylamino)-carbonyl--3, 4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase.
    Ukeda H, Maeda S, Ishii T, Sawamura M.
    Anal Biochem; 1997 Sep 05; 251(2):206-9. PubMed ID: 9299017
    [Abstract] [Full Text] [Related]

  • 3. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide.
    Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B.
    Free Radic Biol Med; 2003 Jun 01; 34(11):1359-68. PubMed ID: 12757846
    [Abstract] [Full Text] [Related]

  • 4. The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins.
    Papapostolou I, Patsoukis N, Georgiou CD.
    Anal Biochem; 2004 Sep 15; 332(2):290-8. PubMed ID: 15325298
    [Abstract] [Full Text] [Related]

  • 5. Selective detection of superoxide anion radicals generated from macrophages by using a novel fluorescent probe.
    Gao JJ, Xu KH, Tang B, Yin LL, Yang GW, An LG.
    FEBS J; 2007 Apr 15; 274(7):1725-33. PubMed ID: 17355258
    [Abstract] [Full Text] [Related]

  • 6. Superoxide-induced bleaching of streptocyanine dyes: Application to assay the enzymatic activity of superoxide dismutases.
    Vinatier V, Guieu V, Madaule Y, Maturano M, Payrastre C, Hoffmann P.
    Anal Biochem; 2010 Oct 15; 405(2):255-9. PubMed ID: 20570646
    [Abstract] [Full Text] [Related]

  • 7. Oxidative coupling of epigallocatechin gallate amplifies antioxidant activity and inhibits xanthine oxidase activity.
    Kurisawa M, Chung JE, Uyama H, Kobayashi S.
    Chem Commun (Camb); 2004 Feb 07; (3):294-5. PubMed ID: 14740044
    [Abstract] [Full Text] [Related]

  • 8. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts.
    Apak R, Güçlü K, Ozyürek M, Bektas Oğlu B, Bener M.
    Methods Mol Biol; 2008 Feb 07; 477():163-93. PubMed ID: 19082947
    [Abstract] [Full Text] [Related]

  • 9. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleraceae mart. (acai).
    Schauss AG, Wu X, Prior RL, Ou B, Huang D, Owens J, Agarwal A, Jensen GS, Hart AN, Shanbrom E.
    J Agric Food Chem; 2006 Nov 01; 54(22):8604-10. PubMed ID: 17061840
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions.
    Barik A, Mishra B, Shen L, Mohan H, Kadam RM, Dutta S, Zhang HY, Priyadarsini KI.
    Free Radic Biol Med; 2005 Sep 15; 39(6):811-22. PubMed ID: 16109310
    [Abstract] [Full Text] [Related]

  • 11. Reduction of mercuric ion in vitro by superoxide anion.
    Aikoh H.
    Physiol Chem Phys Med NMR; 2002 Sep 15; 34(2):185-9. PubMed ID: 12841335
    [Abstract] [Full Text] [Related]

  • 12. Direct enzymatic reduction of lucigenin decreases lucigenin-amplified chemiluminescence produced by superoxide ion.
    Afanas'ev IB, Ostrakhovitch EA, Mikhal'chik EV, Korkina LG.
    Luminescence; 2001 Sep 15; 16(5):305-7. PubMed ID: 11590701
    [Abstract] [Full Text] [Related]

  • 13. Superoxide anion scavenging and xanthine oxidase inhibition of (+)-catechin-aldehyde polycondensates. Amplification of the antioxidant property of (+)-catechin by polycondensation with aldehydes.
    Kim YJ, Chung JE, Kurisawa M, Uyama H, Kobayashi S.
    Biomacromolecules; 2004 Sep 15; 5(2):547-52. PubMed ID: 15003019
    [Abstract] [Full Text] [Related]

  • 14. Phenolic compounds responsible for the superoxide dismutase-like activity in high-Brix apple vinegar.
    Nakamura K, Ogasawara Y, Endou K, Fujimori S, Koyama M, Akano H.
    J Agric Food Chem; 2010 Sep 22; 58(18):10124-32. PubMed ID: 20795622
    [Abstract] [Full Text] [Related]

  • 15. Lucigenin is a mediator of cytochrome C reduction but not of superoxide production.
    Afanas'ev IB, Ostrachovitch EA, Korkina LG.
    Arch Biochem Biophys; 1999 Jun 15; 366(2):267-74. PubMed ID: 10356292
    [Abstract] [Full Text] [Related]

  • 16. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding.
    Ibrahim HR, Hoq MI, Aoki T.
    Int J Biol Macromol; 2007 Dec 01; 41(5):631-40. PubMed ID: 17919719
    [Abstract] [Full Text] [Related]

  • 17. Antioxidant activities of different hemoglobin derivatives.
    Gabbianelli R, Santroni AM, Fedeli D, Kantar A, Falcioni G.
    Biochem Biophys Res Commun; 1998 Jan 26; 242(3):560-4. PubMed ID: 9464255
    [Abstract] [Full Text] [Related]

  • 18. High-throughput superoxide anion radical scavenging capacity assay.
    Tao H, Zhou J, Wu T, Cheng Z.
    J Agric Food Chem; 2014 Sep 24; 62(38):9266-72. PubMed ID: 25184614
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole.
    Olojo RO, Xia RH, Abramson JJ.
    Anal Biochem; 2005 Apr 15; 339(2):338-44. PubMed ID: 15797575
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.