These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 19275329

  • 1. Modeling the effect of channel number and interaction on consonant recognition in a cochlear implant peak-picking strategy.
    Verschuur C.
    J Acoust Soc Am; 2009 Mar; 125(3):1723-36. PubMed ID: 19275329
    [Abstract] [Full Text] [Related]

  • 2. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS, Kreft HA.
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [Abstract] [Full Text] [Related]

  • 3. Comparison of speech processing strategies used in the Clarion implant processor.
    Loizou PC, Stickney G, Mishra L, Assmann P.
    Ear Hear; 2003 Feb; 24(1):12-9. PubMed ID: 12598809
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Use of S-shaped input-output functions for noise suppression in cochlear implants.
    Kasturi K, Loizou PC.
    Ear Hear; 2007 Jun; 28(3):402-11. PubMed ID: 17485989
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Encoding frequency modulation to improve cochlear implant performance in noise.
    Nie K, Stickney G, Zeng FG.
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):64-73. PubMed ID: 15651565
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Speech intelligibility in cochlear implant simulations: Effects of carrier type, interfering noise, and subject experience.
    Whitmal NA, Poissant SF, Freyman RL, Helfer KS.
    J Acoust Soc Am; 2007 Oct; 122(4):2376-88. PubMed ID: 17902872
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Results from a psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants.
    Büchner A, Nogueira W, Edler B, Battmer RD, Lenarz T.
    Otol Neurotol; 2008 Feb; 29(2):189-92. PubMed ID: 18223445
    [Abstract] [Full Text] [Related]

  • 17. The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations.
    Yao J, Zhang YT.
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1299-309. PubMed ID: 12450360
    [Abstract] [Full Text] [Related]

  • 18. Comparison of speech perception performance between Sprint/Esprit 3G and Freedom processors in children implanted with nucleus cochlear implants.
    Santarelli R, Magnavita V, De Filippi R, Ventura L, Genovese E, Arslan E.
    Otol Neurotol; 2009 Apr; 30(3):304-12. PubMed ID: 19225440
    [Abstract] [Full Text] [Related]

  • 19. Speech recognition with the advanced combination encoder and transient emphasis spectral maxima strategies in nucleus 24 recipients.
    Holden LK, Vandali AE, Skinner MW, Fourakis MS, Holden TA.
    J Speech Lang Hear Res; 2005 Jun; 48(3):681-701. PubMed ID: 16197281
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.