These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
63 related items for PubMed ID: 19281234
1. Zinc incorporation via the vapor-liquid-solid mechanism into InP nanowires. van Weert MH, Helman A, van den Einden W, Algra RE, Verheijen MA, Borgström MT, Immink G, Kelly JJ, Kouwenhoven LP, Bakkers EP. J Am Chem Soc; 2009 Apr 08; 131(13):4578-9. PubMed ID: 19281234 [Abstract] [Full Text] [Related]
2. Twinning superlattices in indium phosphide nanowires. Algra RE, Verheijen MA, Borgström MT, Feiner LF, Immink G, van Enckevort WJ, Vlieg E, Bakkers EP. Nature; 2008 Nov 20; 456(7220):369-72. PubMed ID: 19020617 [Abstract] [Full Text] [Related]
3. Impact of preferential indium nucleation on electrical conductivity of vapor-liquid-solid grown indium-tin oxide nanowires. Meng G, Yanagida T, Nagashima K, Yoshida H, Kanai M, Klamchuen A, Zhuge F, He Y, Rahong S, Fang X, Takeda S, Kawai T. J Am Chem Soc; 2013 May 08; 135(18):7033-8. PubMed ID: 23581597 [Abstract] [Full Text] [Related]
4. Synthesis of InP nanotubes. Bakkers EP, Verheijen MA. J Am Chem Soc; 2003 Mar 26; 125(12):3440-1. PubMed ID: 12643700 [Abstract] [Full Text] [Related]
5. Electrically Controlling and Monitoring InP Nanowire Growth from Solution. Dorn A, Allen PM, Bawendi MG. ACS Nano; 2009 Oct 27; 3(10):3260-5. PubMed ID: 19772291 [Abstract] [Full Text] [Related]
6. Unconventional zigzag indium phosphide single-crystalline and twinned nanowires. Shen G, Bando Y, Liu B, Tang C, Golberg D. J Phys Chem B; 2006 Oct 19; 110(41):20129-32. PubMed ID: 17034187 [Abstract] [Full Text] [Related]
7. Parallel-aligned GaAs nanowires with 110 orientation laterally grown on [311]B substrates via the gold-catalyzed vapor-liquid-solid mode. Zhang G, Tateno K, Gotoh H, Nakano H. Nanotechnology; 2010 Mar 05; 21(9):095607. PubMed ID: 20139489 [Abstract] [Full Text] [Related]
8. Selective-area vapour-liquid-solid growth of InP nanowires. Dalacu D, Kam A, Guy Austing D, Wu X, Lapointe J, Aers GC, Poole PJ. Nanotechnology; 2009 Sep 30; 20(39):395602. PubMed ID: 19724116 [Abstract] [Full Text] [Related]
9. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties. Liu Z, Sun K, Jian WB, Xu D, Lin YF, Fang J. Chemistry; 2009 Sep 30; 15(18):4546-52. PubMed ID: 19343761 [Abstract] [Full Text] [Related]
10. III-V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst? Tizei LH, Chiaramonte T, Ugarte D, Cotta MA. Nanotechnology; 2009 Jul 08; 20(27):275604. PubMed ID: 19531855 [Abstract] [Full Text] [Related]
11. Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients. Kumar M, Singh VN, Mehta BR, Singh JP. Nanotechnology; 2009 Jun 10; 20(23):235608. PubMed ID: 19451686 [Abstract] [Full Text] [Related]
12. High-Yield Growth and Characterization of ⟨100⟩ InP p-n Diode Nanowires. Cavalli A, Wang J, Esmaeil Zadeh I, Reimer ME, Verheijen MA, Soini M, Plissard SR, Zwiller V, Haverkort JE, Bakkers EP. Nano Lett; 2016 May 11; 16(5):3071-7. PubMed ID: 27045232 [Abstract] [Full Text] [Related]
13. Intra-shell luminescence of transition-metal-implanted zinc oxide nanowires. Müller S, Zhou M, Li Q, Ronning C. Nanotechnology; 2009 Apr 01; 20(13):135704. PubMed ID: 19420513 [Abstract] [Full Text] [Related]
14. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires. Paiman S, Gao Q, Tan HH, Jagadish C, Pemasiri K, Montazeri M, Jackson HE, Smith LM, Yarrison-Rice JM, Zhang X, Zou J. Nanotechnology; 2009 Jun 03; 20(22):225606. PubMed ID: 19436086 [Abstract] [Full Text] [Related]
15. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires. Xiong Y, Xie Y, Li Z, Li X, Gao S. Chemistry; 2004 Feb 06; 10(3):654-60. PubMed ID: 14767929 [Abstract] [Full Text] [Related]
16. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires. Zardo I, Yu L, Conesa-Boj S, Estradé S, Alet PJ, Rössler J, Frimmer M, Roca I Cabarrocas P, Peiró F, Arbiol J, Morante JR, Fontcuberta I Morral A. Nanotechnology; 2009 Apr 15; 20(15):155602. PubMed ID: 19420550 [Abstract] [Full Text] [Related]
17. Doping GaP Core-Shell Nanowire pn-Junctions: A Study by Off-Axis Electron Holography. Yazdi S, Berg A, Borgström MT, Kasama T, Beleggia M, Samuelson L, Wagner JB. Small; 2015 Jun 10; 11(22):2687-95. PubMed ID: 25656570 [Abstract] [Full Text] [Related]
18. Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Yu L, O'Donnell B, Alet PJ, Conesa-Boj S, Peiró F, Arbiol J, Cabarrocas PR. Nanotechnology; 2009 Jun 03; 20(22):225604. PubMed ID: 19436096 [Abstract] [Full Text] [Related]
19. Reactant-governing growth direction of indium nitride nanowires. Liu H, Shi L, Geng X, Su R, Cheng G, Xie S. Nanotechnology; 2010 Jun 18; 21(24):245601. PubMed ID: 20484787 [Abstract] [Full Text] [Related]
20. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles. Petersen EW, Likovich EM, Russell KJ, Narayanamurti V. Nanotechnology; 2009 Oct 07; 20(40):405603. PubMed ID: 19738315 [Abstract] [Full Text] [Related] Page: [Next] [New Search]