These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
735 related items for PubMed ID: 19283780
1. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G, Olek S, Dietmaier W, Andreesen R, Edinger M. Eur J Immunol; 2009 Apr; 39(4):1088-97. PubMed ID: 19283780 [Abstract] [Full Text] [Related]
2. Natural killer cells prevent CD28-mediated Foxp3 transcription in CD4+CD25- T lymphocytes. Brillard E, Pallandre JR, Chalmers D, Ryffel B, Radlovic A, Seilles E, Rohrlich PS, Pivot X, Tiberghien P, Saas P, Borg C. Exp Hematol; 2007 Mar; 35(3):416-25. PubMed ID: 17309822 [Abstract] [Full Text] [Related]
3. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells. Aarts-Riemens T, Emmelot ME, Verdonck LF, Mutis T. Eur J Immunol; 2008 May; 38(5):1381-90. PubMed ID: 18412171 [Abstract] [Full Text] [Related]
4. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Shen LS, Wang J, Shen DF, Yuan XL, Dong P, Li MX, Xue J, Zhang FM, Ge HL, Xu D. Clin Immunol; 2009 Apr; 131(1):109-18. PubMed ID: 19153062 [Abstract] [Full Text] [Related]
5. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S. Int Immunol; 2006 Aug; 18(8):1197-209. PubMed ID: 16772372 [Abstract] [Full Text] [Related]
6. Distinct subsets of regulatory T cells during pregnancy: is the imbalance of these subsets involved in the pathogenesis of preeclampsia? Steinborn A, Haensch GM, Mahnke K, Schmitt E, Toermer A, Meuer S, Sohn C. Clin Immunol; 2008 Dec; 129(3):401-12. PubMed ID: 18805741 [Abstract] [Full Text] [Related]
7. In-vitro generation and characterisation of murine CD4+CD25+ regulatory T cells with indirect allospecificity. Tsang J, Jiang S, Tanriver Y, Leung E, Lombardi G, Lechler RI. Int Immunopharmacol; 2006 Dec 20; 6(13-14):1883-8. PubMed ID: 17161341 [Abstract] [Full Text] [Related]
8. CD4+CD25+FOXP3+ T regulatory cells reconstitute and accumulate in the bone marrow of patients with multiple myeloma following allogeneic stem cell transplantation. Atanackovic D, Cao Y, Luetkens T, Panse J, Faltz C, Arfsten J, Bartels K, Wolschke C, Eiermann T, Zander AR, Fehse B, Bokemeyer C, Kroger N. Haematologica; 2008 Mar 20; 93(3):423-30. PubMed ID: 18287134 [Abstract] [Full Text] [Related]
9. Targeting acute allograft rejection by immunotherapy with ex vivo-expanded natural CD4+ CD25+ regulatory T cells. Xia G, He J, Zhang Z, Leventhal JR. Transplantation; 2006 Dec 27; 82(12):1749-55. PubMed ID: 17198271 [Abstract] [Full Text] [Related]
10. Recent thymic origin, differentiation, and turnover of regulatory T cells. Mabarrack NH, Turner NL, Mayrhofer G. J Leukoc Biol; 2008 Nov 27; 84(5):1287-97. PubMed ID: 18682578 [Abstract] [Full Text] [Related]
11. CD27 expression discriminates between regulatory and non-regulatory cells after expansion of human peripheral blood CD4+ CD25+ cells. Duggleby RC, Shaw TN, Jarvis LB, Kaur G, Gaston JS. Immunology; 2007 May 27; 121(1):129-39. PubMed ID: 17425604 [Abstract] [Full Text] [Related]
12. Increased CD4+CD25+Foxp3+ regulatory T cells in tolerance induced by portal venous injection. He F, Chen Z, Xu S, Cai M, Wu M, Li H, Chen X. Surgery; 2009 Jun 27; 145(6):663-74. PubMed ID: 19486771 [Abstract] [Full Text] [Related]
13. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Baron U, Floess S, Wieczorek G, Baumann K, Grützkau A, Dong J, Thiel A, Boeld TJ, Hoffmann P, Edinger M, Türbachova I, Hamann A, Olek S, Huehn J. Eur J Immunol; 2007 Sep 27; 37(9):2378-89. PubMed ID: 17694575 [Abstract] [Full Text] [Related]
14. Isolation strategies of regulatory T cells for clinical trials: phenotype, function, stability, and expansion capacity. Ukena SN, Höpting M, Velaga S, Ivanyi P, Grosse J, Baron U, Ganser A, Franzke A. Exp Hematol; 2011 Dec 27; 39(12):1152-60. PubMed ID: 21864487 [Abstract] [Full Text] [Related]
15. The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Qu Y, Zhang B, Zhao L, Liu G, Ma H, Rao E, Zeng C, Zhao Y. Transpl Immunol; 2007 Apr 27; 17(3):153-61. PubMed ID: 17331841 [Abstract] [Full Text] [Related]
16. Unique phenotype of human tonsillar and in vitro-induced FOXP3+CD8+ T cells. Siegmund K, Rückert B, Ouaked N, Bürgler S, Speiser A, Akdis CA, Schmidt-Weber CB. J Immunol; 2009 Feb 15; 182(4):2124-30. PubMed ID: 19201865 [Abstract] [Full Text] [Related]
17. Polyclonal expansion of human CD4(+)CD25(+) regulatory T cells. Hoffmann P, Eder R, Edinger M. Methods Mol Biol; 2011 Feb 15; 677():15-30. PubMed ID: 20941600 [Abstract] [Full Text] [Related]
18. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human. Kang N, Tang L, Li X, Wu D, Li W, Chen X, Cui L, Ba D, He W. Immunol Lett; 2009 Aug 15; 125(2):105-13. PubMed ID: 19539651 [Abstract] [Full Text] [Related]
19. CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O'Farrelly C, Tubridy N, Mills KH. J Immunol; 2009 Dec 01; 183(11):7602-10. PubMed ID: 19917691 [Abstract] [Full Text] [Related]
20. FOXP3 expressing CD127lo CD4+ T cells inversely correlate with CD38+ CD8+ T cell activation levels in primary HIV-1 infection. Ndhlovu LC, Loo CP, Spotts G, Nixon DF, Hecht FM. J Leukoc Biol; 2008 Feb 01; 83(2):254-62. PubMed ID: 17982112 [Abstract] [Full Text] [Related] Page: [Next] [New Search]