These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
331 related items for PubMed ID: 19293570
21. Distinct methylation changes at the IGF2-H19 locus in congenital growth disorders and cancer. Murrell A, Ito Y, Verde G, Huddleston J, Woodfine K, Silengo MC, Spreafico F, Perotti D, De Crescenzo A, Sparago A, Cerrato F, Riccio A. PLoS One; 2008 Mar 26; 3(3):e1849. PubMed ID: 18365005 [Abstract] [Full Text] [Related]
22. Analysis of CDKN1C in Beckwith Wiedemann syndrome. Algar E, Brickell S, Deeble G, Amor D, Smith P. Hum Mutat; 2000 Mar 26; 15(6):497-508. PubMed ID: 10862080 [Abstract] [Full Text] [Related]
23. Genomic profiling maps loss of heterozygosity and defines the timing and stage dependence of epigenetic and genetic events in Wilms' tumors. Yuan E, Li CM, Yamashiro DJ, Kandel J, Thaker H, Murty VV, Tycko B. Mol Cancer Res; 2005 Sep 26; 3(9):493-502. PubMed ID: 16179496 [Abstract] [Full Text] [Related]
24. Tissue-specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region. Ideraabdullah FY, Thorvaldsen JL, Myers JA, Bartolomei MS. Hum Mol Genet; 2014 Dec 01; 23(23):6246-59. PubMed ID: 24990148 [Abstract] [Full Text] [Related]
25. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE. Nature; 1993 Apr 22; 362(6422):749-51. PubMed ID: 8097018 [Abstract] [Full Text] [Related]
26. Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. Engel JR, Smallwood A, Harper A, Higgins MJ, Oshimura M, Reik W, Schofield PN, Maher ER. J Med Genet; 2000 Dec 22; 37(12):921-6. PubMed ID: 11106355 [Abstract] [Full Text] [Related]
27. The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, Heitmann M, Rademacher K, Guala A, Enklaar T, Anichini C, Cirillo Silengo M, Graf N, Prawitt D, Cubellis MV, Horsthemke B, Buiting K, Riccio A. Hum Mol Genet; 2013 Feb 01; 22(3):544-57. PubMed ID: 23118352 [Abstract] [Full Text] [Related]
28. A novel de novo point mutation of the OCT-binding site in the IGF2/H19-imprinting control region in a Beckwith-Wiedemann syndrome patient. Higashimoto K, Jozaki K, Kosho T, Matsubara K, Fuke T, Yamada D, Yatsuki H, Maeda T, Ohtsuka Y, Nishioka K, Joh K, Koseki H, Ogata T, Soejima H. Clin Genet; 2014 Dec 01; 86(6):539-44. PubMed ID: 24299031 [Abstract] [Full Text] [Related]
29. Novel deletion in 11p15.5 imprinting center region 1 in a patient with Beckwith-Wiedemann syndrome provides insight into distal enhancer regulation and tumorigenesis. Bachmann N, Crazzolara R, Bohne F, Kotzot D, Maurer K, Enklaar T, Prawitt D, Bergmann C. Pediatr Blood Cancer; 2017 Mar 01; 64(3):. PubMed ID: 27650505 [Abstract] [Full Text] [Related]
31. Inactivation of H19, an imprinted and putative tumor repressor gene, is a preneoplastic event during Wilms' tumorigenesis. Cui H, Hedborg F, He L, Nordenskjöld A, Sandstedt B, Pfeifer-Ohlsson S, Ohlsson R. Cancer Res; 1997 Oct 15; 57(20):4469-73. PubMed ID: 9377554 [Abstract] [Full Text] [Related]
32. Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation. Sullivan MJ, Taniguchi T, Jhee A, Kerr N, Reeve AE. Oncogene; 1999 Dec 09; 18(52):7527-34. PubMed ID: 10602511 [Abstract] [Full Text] [Related]
33. Loss of imprinting of IGF2 sense and antisense transcripts in Wilms' tumor. Vu TH, Chuyen NV, Li T, Hoffman AR. Cancer Res; 2003 Apr 15; 63(8):1900-5. PubMed ID: 12702581 [Abstract] [Full Text] [Related]
34. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Taniguchi T, Sullivan MJ, Ogawa O, Reeve AE. Proc Natl Acad Sci U S A; 1995 Mar 14; 92(6):2159-63. PubMed ID: 7534414 [Abstract] [Full Text] [Related]
35. Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms' tumour. Astuti D, Latif F, Wagner K, Gentle D, Cooper WN, Catchpoole D, Grundy R, Ferguson-Smith AC, Maher ER. Br J Cancer; 2005 Apr 25; 92(8):1574-80. PubMed ID: 15798773 [Abstract] [Full Text] [Related]
36. Epigenotype, genotype, and phenotype analysis of patients in Taiwan with Beckwith-Wiedemann syndrome. Lin HY, Chuang CK, Tu RY, Fang YY, Su YN, Chen CP, Chang CY, Liu HC, Chu TH, Niu DM, Lin SP. Mol Genet Metab; 2016 Sep 25; 119(1-2):8-13. PubMed ID: 27436784 [Abstract] [Full Text] [Related]
37. Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Engel N, West AG, Felsenfeld G, Bartolomei MS. Nat Genet; 2004 Aug 25; 36(8):883-8. PubMed ID: 15273688 [Abstract] [Full Text] [Related]
38. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Brown KW, Villar AJ, Bickmore W, Clayton-Smith J, Catchpoole D, Maher ER, Reik W. Hum Mol Genet; 1996 Dec 25; 5(12):2027-32. PubMed ID: 8968759 [Abstract] [Full Text] [Related]
39. The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model. Freschi A, Del Prete R, Pignata L, Cecere F, Manfrevola F, Mattia M, Cobellis G, Sparago A, Bartolomei MS, Riccio A, Cerrato F. Hum Mol Genet; 2021 Jul 28; 30(16):1509-1520. PubMed ID: 34132339 [Abstract] [Full Text] [Related]
40. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. Maas SM, Vansenne F, Kadouch DJ, Ibrahim A, Bliek J, Hopman S, Mannens MM, Merks JH, Maher ER, Hennekam RC. Am J Med Genet A; 2016 Sep 28; 170(9):2248-60. PubMed ID: 27419809 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]