These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
937 related items for PubMed ID: 19299083
1. Removal of lead and zinc ions from water by low cost adsorbents. Mishra PC, Patel RK. J Hazard Mater; 2009 Aug 30; 168(1):319-25. PubMed ID: 19299083 [Abstract] [Full Text] [Related]
2. A study on removal characteristics of heavy metals from aqueous solution by fly ash. Cho H, Oh D, Kim K. J Hazard Mater; 2005 Dec 09; 127(1-3):187-95. PubMed ID: 16125307 [Abstract] [Full Text] [Related]
3. Nitrate removal from aqueous solution by adsorption onto various materials. Oztürk N, Bektaş TE. J Hazard Mater; 2004 Aug 09; 112(1-2):155-62. PubMed ID: 15225942 [Abstract] [Full Text] [Related]
4. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Pehlivan E, Cetin S, Yanik BH. J Hazard Mater; 2006 Jul 31; 135(1-3):193-9. PubMed ID: 16368188 [Abstract] [Full Text] [Related]
7. Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions. Rao MM, Rao GP, Seshaiah K, Choudary NV, Wang MC. Waste Manag; 2008 Apr 15; 28(5):849-58. PubMed ID: 17416512 [Abstract] [Full Text] [Related]
8. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. Boudrahem F, Aissani-Benissad F, Aït-Amar H. J Environ Manage; 2009 Jul 15; 90(10):3031-9. PubMed ID: 19447542 [Abstract] [Full Text] [Related]
9. Adsorption of boron from aqueous solutions using fly ash: batch and column studies. Oztürk N, Kavak D. J Hazard Mater; 2005 Dec 09; 127(1-3):81-8. PubMed ID: 16098659 [Abstract] [Full Text] [Related]
14. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies. Karagozoglu B, Tasdemir M, Demirbas E, Kobya M. J Hazard Mater; 2007 Aug 17; 147(1-2):297-306. PubMed ID: 17270343 [Abstract] [Full Text] [Related]
15. Adsorption of Chrysoidine R by using fly ash in batch process. Matheswaran M, Karunanithi T. J Hazard Mater; 2007 Jun 25; 145(1-2):154-61. PubMed ID: 17141408 [Abstract] [Full Text] [Related]
16. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Xu D, Xu J, Wu J, Muhammad A. Chemosphere; 2006 Apr 25; 63(2):344-52. PubMed ID: 16242173 [Abstract] [Full Text] [Related]
17. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study. Ozdes D, Gundogdu A, Kemer B, Duran C, Senturk HB, Soylak M. J Hazard Mater; 2009 Jul 30; 166(2-3):1480-7. PubMed ID: 19167162 [Abstract] [Full Text] [Related]
18. Preparation of xanthated bentonite and its removal behavior for Pb(II) ions. He YF, Li FR, Wang RM, Li FY, Wang Y, Zhang ZH. Water Sci Technol; 2010 Jul 30; 61(5):1235-43. PubMed ID: 20220246 [Abstract] [Full Text] [Related]
19. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Mohan D, Singh KP, Singh VK. J Hazard Mater; 2006 Jul 31; 135(1-3):280-95. PubMed ID: 16442720 [Abstract] [Full Text] [Related]
20. Dye adsorption on unburned carbon: kinetics and equilibrium. Wang S, Li H. J Hazard Mater; 2005 Nov 11; 126(1-3):71-7. PubMed ID: 16081211 [Abstract] [Full Text] [Related] Page: [Next] [New Search]