These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
361 related items for PubMed ID: 19299432
1. The targeting of cyclophilin D by RNAi as a novel cardioprotective therapy: evidence from two-photon imaging. Kato M, Akao M, Matsumoto-Ida M, Makiyama T, Iguchi M, Takeda T, Shimizu S, Kita T. Cardiovasc Res; 2009 Jul 15; 83(2):335-44. PubMed ID: 19299432 [Abstract] [Full Text] [Related]
2. Evidence that hydroxysafflor yellow A protects the heart against ischaemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Liu YN, Zhou ZM, Chen P. Clin Exp Pharmacol Physiol; 2008 Feb 15; 35(2):211-6. PubMed ID: 17941891 [Abstract] [Full Text] [Related]
3. Real-time 2-photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Matsumoto-Ida M, Akao M, Takeda T, Kato M, Kita T. Circulation; 2006 Oct 03; 114(14):1497-503. PubMed ID: 17000908 [Abstract] [Full Text] [Related]
4. Synergistic protective effect of cyclosporin A and rotenone against hypoxia-reoxygenation in cardiomyocytes. Teixeira G, Abrial M, Portier K, Chiari P, Couture-Lepetit E, Tourneur Y, Ovize M, Gharib A. J Mol Cell Cardiol; 2013 Mar 03; 56():55-62. PubMed ID: 23238221 [Abstract] [Full Text] [Related]
5. Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Hausenloy DJ, Lim SY, Ong SG, Davidson SM, Yellon DM. Cardiovasc Res; 2010 Oct 01; 88(1):67-74. PubMed ID: 20400621 [Abstract] [Full Text] [Related]
6. Direct monitoring of mitochondrial calcium levels in cultured cardiac myocytes using a novel fluorescent indicator protein, GCaMP2-mt. Iguchi M, Kato M, Nakai J, Takeda T, Matsumoto-Ida M, Kita T, Kimura T, Akao M. Int J Cardiol; 2012 Jul 12; 158(2):225-34. PubMed ID: 21295866 [Abstract] [Full Text] [Related]
7. Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart. Granata R, Trovato L, Gallo MP, Destefanis S, Settanni F, Scarlatti F, Brero A, Ramella R, Volante M, Isgaard J, Levi R, Papotti M, Alloatti G, Ghigo E. Cardiovasc Res; 2009 Jul 15; 83(2):303-12. PubMed ID: 19293247 [Abstract] [Full Text] [Related]
8. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Ruiz-Meana M, Abellán A, Miró-Casas E, Garcia-Dorado D. Basic Res Cardiol; 2007 Nov 15; 102(6):542-52. PubMed ID: 17891523 [Abstract] [Full Text] [Related]
9. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y. Nature; 2005 Mar 31; 434(7033):652-8. PubMed ID: 15800626 [Abstract] [Full Text] [Related]
10. Epoxyeicosatrienoic acids limit damage to mitochondrial function following stress in cardiac cells. Katragadda D, Batchu SN, Cho WJ, Chaudhary KR, Falck JR, Seubert JM. J Mol Cell Cardiol; 2009 Jun 31; 46(6):867-75. PubMed ID: 19285984 [Abstract] [Full Text] [Related]
12. Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes. Fernandez-Sanz C, Ruiz-Meana M, Castellano J, Miro-Casas E, Nuñez E, Inserte J, Vázquez J, Garcia-Dorado D. Thromb Haemost; 2015 Mar 31; 113(3):441-51. PubMed ID: 25631625 [Abstract] [Full Text] [Related]
13. Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection. Amanakis G, Sun J, Fergusson MM, McGinty S, Liu C, Molkentin JD, Murphy E. Cardiovasc Res; 2021 Jan 01; 117(1):212-223. PubMed ID: 32129829 [Abstract] [Full Text] [Related]
14. Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Parks RJ, Menazza S, Holmström KM, Amanakis G, Fergusson M, Ma H, Aponte AM, Bernardi P, Finkel T, Murphy E. Cardiovasc Res; 2019 Feb 01; 115(2):385-394. PubMed ID: 30165576 [Abstract] [Full Text] [Related]
15. Cyclophilin D Modulates the Cardiac Mitochondrial Target of Isoflurane, Sevoflurane, and Desflurane. Harisseh R, Chiari P, Villedieu C, Sueur P, Abrial M, Fellahi JL, Ovize M, Gharib A. J Cardiovasc Pharmacol; 2017 May 01; 69(5):326-334. PubMed ID: 28328748 [Abstract] [Full Text] [Related]
16. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J, Da Silva CC, Teixeira G, Mewton N, Belaidi E, Durand A, Abrial M, Lacampagne A, Rieusset J, Ovize M. Circulation; 2013 Oct 01; 128(14):1555-65. PubMed ID: 23983249 [Abstract] [Full Text] [Related]
17. Role of cyclophilin D in the resistance of brain mitochondria to the permeability transition. Eliseev RA, Filippov G, Velos J, VanWinkle B, Goldman A, Rosier RN, Gunter TE. Neurobiol Aging; 2007 Oct 01; 28(10):1532-42. PubMed ID: 16876914 [Abstract] [Full Text] [Related]
18. Enhanced cell-volume regulation in cyclosporin A cardioprotection. Diaz RJ, Fernandes K, Lytvyn Y, Hawrylyshyn K, Harvey K, Hossain T, Hinek A, Wilson GJ. Cardiovasc Res; 2013 Jun 01; 98(3):411-9. PubMed ID: 23483048 [Abstract] [Full Text] [Related]
19. NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition. Javadov S, Choi A, Rajapurohitam V, Zeidan A, Basnakian AG, Karmazyn M. Cardiovasc Res; 2008 Jan 15; 77(2):416-24. PubMed ID: 18006455 [Abstract] [Full Text] [Related]
20. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. Zhu WZ, Xie Y, Chen L, Yang HT, Zhou ZN. J Mol Cell Cardiol; 2006 Jan 15; 40(1):96-106. PubMed ID: 16288778 [Abstract] [Full Text] [Related] Page: [Next] [New Search]