These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 19301846

  • 1. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods.
    Strickland AD, Batt CA.
    Anal Chem; 2009 Apr 15; 81(8):2895-903. PubMed ID: 19301846
    [Abstract] [Full Text] [Related]

  • 2. Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides.
    Saute B, Premasiri R, Ziegler L, Narayanan R.
    Analyst; 2012 Nov 07; 137(21):5082-7. PubMed ID: 22977883
    [Abstract] [Full Text] [Related]

  • 3. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods.
    Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y.
    Biosens Bioelectron; 2012 Nov 07; 38(1):94-9. PubMed ID: 22647534
    [Abstract] [Full Text] [Related]

  • 4. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates.
    Chen X, Lin M, Sun L, Xu T, Lai K, Huang M, Lin H.
    Food Chem; 2019 Sep 30; 293():271-277. PubMed ID: 31151611
    [Abstract] [Full Text] [Related]

  • 5. Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim.
    Guo Y, Guo S, Li J, Wang E, Dong S.
    Talanta; 2011 Mar 15; 84(1):60-4. PubMed ID: 21315898
    [Abstract] [Full Text] [Related]

  • 6. Fluorescence enhancement of Carbendazim in the presence of cyclodextrins and micellar media: a reappraisal.
    Maggio RM, Piccirilli GN, Escandar GM.
    Appl Spectrosc; 2005 Jul 15; 59(7):873-80. PubMed ID: 16053557
    [Abstract] [Full Text] [Related]

  • 7. Spectrofluorimetric determination of benzoimidazolic pesticides: effect of p-sulfonatocalix[6]arene and cyclodextrins.
    Pacioni NL, Sueldo Occello VN, Lazzarotto M, Veglia AV.
    Anal Chim Acta; 2008 Aug 22; 624(1):133-40. PubMed ID: 18706318
    [Abstract] [Full Text] [Related]

  • 8. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags.
    Boca SC, Astilean S.
    Nanotechnology; 2010 Jun 11; 21(23):235601. PubMed ID: 20463383
    [Abstract] [Full Text] [Related]

  • 9. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy.
    Nguyen TH, Zhang Z, Mustapha A, Li H, Lin M.
    J Agric Food Chem; 2014 Oct 29; 62(43):10445-51. PubMed ID: 25317673
    [Abstract] [Full Text] [Related]

  • 10. Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection.
    Tan EZ, Yin PG, You TT, Wang H, Guo L.
    ACS Appl Mater Interfaces; 2012 Jul 25; 4(7):3432-7. PubMed ID: 22708788
    [Abstract] [Full Text] [Related]

  • 11. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC, Ando RA, Sant'Ana AC, Rossi LM, Santos PS, Temperini ML, Corio P.
    Phys Chem Chem Phys; 2009 Sep 14; 11(34):7491-8. PubMed ID: 19690724
    [Abstract] [Full Text] [Related]

  • 12. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD.
    J Phys Chem B; 2005 Jan 13; 109(1):312-20. PubMed ID: 16851017
    [Abstract] [Full Text] [Related]

  • 13. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy.
    Gabudean AM, Biro D, Astilean S.
    Nanotechnology; 2012 Dec 07; 23(48):485706. PubMed ID: 23138835
    [Abstract] [Full Text] [Related]

  • 14. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique.
    Li JL, Sun DW, Pu H, Jayas DS.
    Food Chem; 2017 Mar 01; 218():543-552. PubMed ID: 27719947
    [Abstract] [Full Text] [Related]

  • 15. Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced raman spectroscopy.
    Fan JG, Zhao YP.
    Langmuir; 2008 Dec 16; 24(24):14172-5. PubMed ID: 19053654
    [Abstract] [Full Text] [Related]

  • 16. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates.
    Orendorff CJ, Gearheart L, Jana NR, Murphy CJ.
    Phys Chem Chem Phys; 2006 Jan 07; 8(1):165-70. PubMed ID: 16482257
    [Abstract] [Full Text] [Related]

  • 17. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea.
    He J, Li H, Zhang L, Zhi X, Li X, Wang X, Feng Z, Shen G, Ding X.
    Food Chem; 2021 Mar 01; 339():128085. PubMed ID: 33152876
    [Abstract] [Full Text] [Related]

  • 18. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H, Wang JH, Jin W, Li P, Chen M, Xie HH, Yu XF, Wang H, Dai Z, Xiao X, Chu PK.
    Small; 2014 Oct 15; 10(19):4012-9. PubMed ID: 24947686
    [Abstract] [Full Text] [Related]

  • 19. Complexation of carbendazim with hydroxypropyl-β-cyclodextrin to improve solubility and fungicidal activity.
    Ge X, Huang Z, Tian S, Huang Y, Zeng C.
    Carbohydr Polym; 2012 Jun 05; 89(1):208-12. PubMed ID: 24750625
    [Abstract] [Full Text] [Related]

  • 20. Fabrication of gold nanorods for SERS detection of thiabendazole in apple.
    Fu G, Sun DW, Pu H, Wei Q.
    Talanta; 2019 Apr 01; 195():841-849. PubMed ID: 30625626
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.