These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
417 related items for PubMed ID: 19301908
41. IP4M: an integrated platform for mass spectrometry-based metabolomics data mining. Liang D, Liu Q, Zhou K, Jia W, Xie G, Chen T. BMC Bioinformatics; 2020 Oct 07; 21(1):444. PubMed ID: 33028191 [Abstract] [Full Text] [Related]
42. Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index. Mihaleva VV, Verhoeven HA, de Vos RC, Hall RD, van Ham RC. Bioinformatics; 2009 Mar 15; 25(6):787-94. PubMed ID: 19176550 [Abstract] [Full Text] [Related]
43. Comparative evaluation of eight software programs for alignment of gas chromatography-mass spectrometry chromatograms in metabolomics experiments. Niu W, Knight E, Xia Q, McGarvey BD. J Chromatogr A; 2014 Dec 29; 1374():199-206. PubMed ID: 25435458 [Abstract] [Full Text] [Related]
46. Metabonomic study of ochratoxin a toxicity in rats after repeated administration: phenotypic anchoring enhances the ability for biomarker discovery. Sieber M, Wagner S, Rached E, Amberg A, Mally A, Dekant W. Chem Res Toxicol; 2009 Jul 29; 22(7):1221-31. PubMed ID: 19610676 [Abstract] [Full Text] [Related]
47. Classification of peptide mass fingerprint data by novel no-regret boosting method. Gambin A, Szczurek E, Dutkowski J, Bakun M, Dadlez M. Comput Biol Med; 2009 May 29; 39(5):460-73. PubMed ID: 19386298 [Abstract] [Full Text] [Related]
48. Preprocessing of raw metabonomic data. Vettukattil R. Methods Mol Biol; 2015 May 29; 1277():123-36. PubMed ID: 25677151 [Abstract] [Full Text] [Related]
49. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Ewald JC, Heux S, Zamboni N. Anal Chem; 2009 May 01; 81(9):3623-9. PubMed ID: 19320491 [Abstract] [Full Text] [Related]
51. From numbers to a biological sense: How the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Godzien J, Ciborowski M, Angulo S, Barbas C. Electrophoresis; 2013 Oct 01; 34(19):2812-26. PubMed ID: 23775708 [Abstract] [Full Text] [Related]
53. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets. Hoffmann N, Keck M, Neuweger H, Wilhelm M, Högy P, Niehaus K, Stoye J. BMC Bioinformatics; 2012 Aug 27; 13():214. PubMed ID: 22920415 [Abstract] [Full Text] [Related]
54. Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data. Redestig H, Fukushima A, Stenlund H, Moritz T, Arita M, Saito K, Kusano M. Anal Chem; 2009 Oct 01; 81(19):7974-80. PubMed ID: 19743813 [Abstract] [Full Text] [Related]
55. MRMkit: Automated Data Processing for Large-Scale Targeted Metabolomics Analysis. Teo G, Chew WS, Burla BJ, Herr D, Tai ES, Wenk MR, Torta F, Choi H. Anal Chem; 2020 Oct 20; 92(20):13677-13682. PubMed ID: 32930575 [Abstract] [Full Text] [Related]
59. QPMASS: A parallel peak alignment and quantification software for the analysis of large-scale gas chromatography-mass spectrometry (GC-MS)-based metabolomics datasets. Duan L, Ma A, Meng X, Shen GA, Qi X. J Chromatogr A; 2020 Jun 07; 1620():460999. PubMed ID: 32151418 [Abstract] [Full Text] [Related]