These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


342 related items for PubMed ID: 19302832

  • 1. Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses.
    Bosman LW, Konnerth A.
    Neuroscience; 2009 Sep 01; 162(3):612-23. PubMed ID: 19302832
    [Abstract] [Full Text] [Related]

  • 2. Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses.
    Ohtsuki G, Hirano T.
    Eur J Neurosci; 2008 Dec 01; 28(12):2393-400. PubMed ID: 19032589
    [Abstract] [Full Text] [Related]

  • 3. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum.
    Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M.
    Neuroscience; 2009 Sep 01; 162(3):601-11. PubMed ID: 19166909
    [Abstract] [Full Text] [Related]

  • 4. Climbing fiber synaptic plasticity and modifications in Purkinje cell excitability.
    Schmolesky MT, De Zeeuw CI, Hansel C.
    Prog Brain Res; 2005 Sep 01; 148():81-94. PubMed ID: 15661183
    [No Abstract] [Full Text] [Related]

  • 5. Activity-dependent axonal and synaptic plasticity in the cerebellum.
    Cesa R, Strata P.
    Psychoneuroendocrinology; 2007 Aug 01; 32 Suppl 1():S31-5. PubMed ID: 17640822
    [Abstract] [Full Text] [Related]

  • 6. Changes in the structure of synaptic junctions during climbing fiber synaptogenesis.
    Landis DM, Payne HR, Weinstein LA.
    Synapse; 1989 Aug 01; 4(4):281-93. PubMed ID: 2603147
    [Abstract] [Full Text] [Related]

  • 7. Normal adult climbing fiber monoinnervation of cerebellar Purkinje cells in mice lacking MHC class I molecules.
    Letellier M, Willson ML, Gautheron V, Mariani J, Lohof AM.
    Dev Neurobiol; 2008 Jul 01; 68(8):997-1006. PubMed ID: 18418877
    [Abstract] [Full Text] [Related]

  • 8. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum.
    Andjus PR, Zhu L, Cesa R, Carulli D, Strata P.
    Neuroscience; 2003 Jul 01; 121(3):563-72. PubMed ID: 14568018
    [Abstract] [Full Text] [Related]

  • 9. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum.
    Mason CA, Christakos S, Catalano SM.
    J Comp Neurol; 1990 Jul 01; 297(1):77-90. PubMed ID: 1695909
    [Abstract] [Full Text] [Related]

  • 10. Sodium imaging of climbing fiber innervation fields in developing mouse Purkinje cells.
    Scelfo B, Strata P, Knöpfel T.
    J Neurophysiol; 2003 May 01; 89(5):2555-63. PubMed ID: 12612029
    [Abstract] [Full Text] [Related]

  • 11. Evidence for synaptic plasticity in the cerebellar cortex.
    Ito M.
    Acta Morphol Hung; 1983 May 01; 31(1-3):213-8. PubMed ID: 6312772
    [Abstract] [Full Text] [Related]

  • 12. Correlation between multiple climbing fibre regression and parallel fibre response development in the postnatal mouse cerebellum.
    Scelfo B, Strata P.
    Eur J Neurosci; 2005 Feb 01; 21(4):971-8. PubMed ID: 15787703
    [Abstract] [Full Text] [Related]

  • 13. Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells.
    Sotelo C.
    J Comp Neurol; 2008 Jan 10; 506(2):240-62. PubMed ID: 18022955
    [Abstract] [Full Text] [Related]

  • 14. Synaptic plasticity in the cerebellar cortex and its role in motor learning.
    Ito M.
    Can J Neurol Sci; 1993 May 10; 20 Suppl 3():S70-4. PubMed ID: 8334595
    [Abstract] [Full Text] [Related]

  • 15. Short-term facilitation and depression in the cerebellum: some observations on wild-type and mutant rodents deficient in the extracellular matrix molecule tenascin C.
    Andjus PR, Bajić A, Zhu L, Schachner M, Strata P.
    Ann N Y Acad Sci; 2005 Jun 10; 1048():185-97. PubMed ID: 16154932
    [Abstract] [Full Text] [Related]

  • 16. The rat olivocerebellar system visualized in detail with anterograde PHA-L tracing technique, and sprouting of climbing fibers demonstrated after subtotal olivary lesions.
    Wiklund L, Rossi F, Strata P, van der Want JJ.
    Eur J Morphol; 1990 Jun 10; 28(2-4):256-67. PubMed ID: 2245134
    [Abstract] [Full Text] [Related]

  • 17. Critical period for activity-dependent synapse elimination in developing cerebellum.
    Kakizawa S, Yamasaki M, Watanabe M, Kano M.
    J Neurosci; 2000 Jul 01; 20(13):4954-61. PubMed ID: 10864953
    [Abstract] [Full Text] [Related]

  • 18. Axonal and synaptic remodeling in the mature cerebellar cortex.
    Cesa R, Strata P.
    Prog Brain Res; 2005 Jul 01; 148():45-56. PubMed ID: 15661180
    [Abstract] [Full Text] [Related]

  • 19. Fate of grafted embryonic Purkinje cells in the cerebellum of the adult "Purkinje cell degeneration" mutant mouse. II. Development of synaptic responses: an in vitro study.
    Gardette R, Crepel F, Alvarado-Mallart RM, Sotelo C.
    J Comp Neurol; 1990 May 08; 295(2):188-96. PubMed ID: 2358511
    [Abstract] [Full Text] [Related]

  • 20. Plasticity of synaptic size with constancy of total synaptic contact area on Purkinje cells in the cerebellum.
    Hillman DE, Chen S.
    Prog Clin Biol Res; 1981 May 08; 59A():229-45. PubMed ID: 6795641
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.