These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 19306144
1. Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. Rodrigues DF, Elimelech M. Biofouling; 2009; 25(5):401-11. PubMed ID: 19306144 [Abstract] [Full Text] [Related]
2. Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Rodrigues DF, Elimelech M. Environ Sci Technol; 2010 Jun 15; 44(12):4583-9. PubMed ID: 20465305 [Abstract] [Full Text] [Related]
3. Biofilm formation in a hydrodynamic environment by novel fimh variants and ramifications for virulence. Schembri MA, Klemm P. Infect Immun; 2001 Mar 15; 69(3):1322-8. PubMed ID: 11179294 [Abstract] [Full Text] [Related]
4. Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Bollinger RR, Everett ML, Wahl SD, Lee YH, Orndorff PE, Parker W. Mol Immunol; 2006 Feb 15; 43(4):378-87. PubMed ID: 16310051 [Abstract] [Full Text] [Related]
5. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation. Uhlich GA, Rogers DP, Mosier DA. Foodborne Pathog Dis; 2010 Aug 15; 7(8):935-43. PubMed ID: 20367070 [Abstract] [Full Text] [Related]
6. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method. Rivas L, Dykes GA, Fegan N. J Microbiol Methods; 2007 Apr 15; 69(1):44-51. PubMed ID: 17239460 [Abstract] [Full Text] [Related]
7. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Castonguay MH, van der Schaaf S, Koester W, Krooneman J, van der Meer W, Harmsen H, Landini P. Res Microbiol; 2006 Jun 15; 157(5):471-8. PubMed ID: 16376056 [Abstract] [Full Text] [Related]
8. Characterization of biofilm-forming abilities of antibiotic-resistant Salmonella typhimurium DT104 on hydrophobic abiotic surfaces. Ngwai YB, Adachi Y, Ogawa Y, Hara H. J Microbiol Immunol Infect; 2006 Aug 15; 39(4):278-91. PubMed ID: 16926973 [Abstract] [Full Text] [Related]
9. The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films. Pidhatika B, Möller J, Benetti EM, Konradi R, Rakhmatullina E, Mühlebach A, Zimmermann R, Werner C, Vogel V, Textor M. Biomaterials; 2010 Dec 15; 31(36):9462-72. PubMed ID: 21059465 [Abstract] [Full Text] [Related]
10. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Abraham SN, Sun D, Dale JB, Beachey EH. Nature; 1988 Dec 15; 336(6200):682-4. PubMed ID: 2904657 [Abstract] [Full Text] [Related]
11. Spent media from cultures of environmental isolates of Escherichia coli can suppress the deficiency of biofilm formation under anoxic conditions of laboratory E. coli strains. Cabellos-Avelar T, Souza V, Membrillo-Hernández J. FEMS Microbiol Ecol; 2006 Dec 15; 58(3):414-24. PubMed ID: 17117986 [Abstract] [Full Text] [Related]
12. Optimisation of polymeric surface pre-treatment to prevent bacterial biofilm formation for use in microfluidics. Davidson CA, Lowe CR. J Mol Recognit; 2004 Dec 15; 17(3):180-5. PubMed ID: 15137027 [Abstract] [Full Text] [Related]
13. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus. Entcheva-Dimitrov P, Spormann AM. J Bacteriol; 2004 Dec 15; 186(24):8254-66. PubMed ID: 15576774 [Abstract] [Full Text] [Related]
14. Inhibition of Salmonella typhimurium attachment to chicken cecal mucus by intestinal isolates of Enterobacteriaceae and lactobacilli. Craven SE, Williams DD. Avian Dis; 1997 Dec 15; 41(3):548-58. PubMed ID: 9356699 [Abstract] [Full Text] [Related]
15. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Barras A, Martin FA, Bande O, Baumann JS, Ghigo JM, Boukherroub R, Beloin C, Siriwardena A, Szunerits S. Nanoscale; 2013 Mar 21; 5(6):2307-16. PubMed ID: 23396565 [Abstract] [Full Text] [Related]
16. Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, Dahbi G, Blanco M, Ponte Mdel C, Soriano F. Microb Pathog; 2008 Aug 21; 45(2):86-91. PubMed ID: 18486439 [Abstract] [Full Text] [Related]
17. Influence of Type I Fimbriae and Fluid Shear Stress on Bacterial Behavior and Multicellular Architecture of Early Escherichia coli Biofilms at Single-Cell Resolution. Wang L, Keatch R, Zhao Q, Wright JA, Bryant CE, Redmann AL, Terentjev EM. Appl Environ Microbiol; 2018 Mar 15; 84(6):. PubMed ID: 29330179 [Abstract] [Full Text] [Related]
18. Biofilm formation by Escherichia coli in hypertonic sucrose media. Kawarai T, Furukawa S, Narisawa N, Hagiwara C, Ogihara H, Yamasaki M. J Biosci Bioeng; 2009 Jun 15; 107(6):630-5. PubMed ID: 19447340 [Abstract] [Full Text] [Related]
19. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Barrios AF, Zuo R, Ren D, Wood TK. Biotechnol Bioeng; 2006 Jan 05; 93(1):188-200. PubMed ID: 16317765 [Abstract] [Full Text] [Related]
20. [Regulation of biofilm formation in Escherichia coli K12: effect of mutations in HNS, StpA, lon, and rpoN genes]. Belik AS, Tarasova NN, Khmel' IA. Mol Gen Mikrobiol Virusol; 2008 Jan 05; (4):3-5. PubMed ID: 19177607 [Abstract] [Full Text] [Related] Page: [Next] [New Search]