These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
54 related items for PubMed ID: 19308871
41. The use of artificial neural networks to reduce data collection demands in determining spine loading: a laboratory based analysis. Parkinson RJ, Callaghan JP. Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):511-22. PubMed ID: 19308871 [Abstract] [Full Text] [Related]
42. A comparison of low back kinetic estimates obtained through posture matching, rigid link modeling and an EMG-assisted model. Parkinson RJ, Bezaire M, Callaghan JP. Appl Ergon; 2011 Jul; 42(5):644-51. PubMed ID: 21055725 [Abstract] [Full Text] [Related]
43. An evaluation of predictive methods for estimating cumulative spinal loading. Callaghan JP, Salewytsch AJ, Andrews DM. Ergonomics; 2001 Jul 15; 44(9):825-37. PubMed ID: 11560364 [Abstract] [Full Text] [Related]
44. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Arjmand N, Gagnon D, Plamondon A, Shirazi-Adl A, Larivière C. Clin Biomech (Bristol); 2009 Aug 15; 24(7):533-41. PubMed ID: 19493597 [Abstract] [Full Text] [Related]
45. Predicting Cervical Spine Compression and Shear in Helicopter Helmeted Conditions Using Artificial Neural Networks. Moore CAB, Barrett JM, Healey L, Callaghan JP, Fischer SL. IISE Trans Occup Ergon Hum Factors; 2021 Aug 15; 9(3-4):154-166. PubMed ID: 34092207 [Abstract] [Full Text] [Related]
46. The use of artificial neural networks to reduce data collection demands in determining spine loading: a laboratory based analysis. Parkinson RJ, Callaghan JP. Comput Methods Biomech Biomed Engin; 2009 Oct 15; 12(5):511-22. PubMed ID: 19308871 [Abstract] [Full Text] [Related]
47. A comparison of low back kinetic estimates obtained through posture matching, rigid link modeling and an EMG-assisted model. Parkinson RJ, Bezaire M, Callaghan JP. Appl Ergon; 2011 Jul 15; 42(5):644-51. PubMed ID: 21055725 [Abstract] [Full Text] [Related]
48. An evaluation of predictive methods for estimating cumulative spinal loading. Callaghan JP, Salewytsch AJ, Andrews DM. Ergonomics; 2001 Jul 15; 44(9):825-37. PubMed ID: 11560364 [Abstract] [Full Text] [Related]
49. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Arjmand N, Gagnon D, Plamondon A, Shirazi-Adl A, Larivière C. Clin Biomech (Bristol); 2009 Aug 15; 24(7):533-41. PubMed ID: 19493597 [Abstract] [Full Text] [Related]
50. Predicting Cervical Spine Compression and Shear in Helicopter Helmeted Conditions Using Artificial Neural Networks. Moore CAB, Barrett JM, Healey L, Callaghan JP, Fischer SL. IISE Trans Occup Ergon Hum Factors; 2021 Aug 15; 9(3-4):154-166. PubMed ID: 34092207 [Abstract] [Full Text] [Related]
51. The use of artificial neural networks to reduce data collection demands in determining spine loading: a laboratory based analysis. Parkinson RJ, Callaghan JP. Comput Methods Biomech Biomed Engin; 2009 Oct 15; 12(5):511-22. PubMed ID: 19308871 [Abstract] [Full Text] [Related]
52. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Sato F, Shimada Y, Selaru FM, Shibata D, Maeda M, Watanabe G, Mori Y, Stass SA, Imamura M, Meltzer SJ. Cancer; 2005 Apr 15; 103(8):1596-605. PubMed ID: 15751017 [Abstract] [Full Text] [Related]