These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
282 related items for PubMed ID: 19309172
1. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA. ACS Nano; 2009 Mar 24; 3(3):643-52. PubMed ID: 19309172 [Abstract] [Full Text] [Related]
2. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GA, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA. ACS Nano; 2010 Mar 23; 4(3):1664-70. PubMed ID: 20155967 [Abstract] [Full Text] [Related]
4. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P. Nano Lett; 2008 Nov 23; 8(11):3983-8. PubMed ID: 18831572 [Abstract] [Full Text] [Related]
5. Mechanisms of Fano resonances in coupled plasmonic systems. Lovera A, Gallinet B, Nordlander P, Martin OJ. ACS Nano; 2013 May 28; 7(5):4527-36. PubMed ID: 23614396 [Abstract] [Full Text] [Related]
6. Fano resonances in individual coherent plasmonic nanocavities. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA. Nano Lett; 2009 Apr 28; 9(4):1663-7. PubMed ID: 19281254 [Abstract] [Full Text] [Related]
10. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. Gallinet B, Martin OJ. ACS Nano; 2013 Aug 27; 7(8):6978-87. PubMed ID: 23869857 [Abstract] [Full Text] [Related]
11. Higher order Fano graphene metamaterials for nanoscale optical sensing. Guo X, Hu H, Zhu X, Yang X, Dai Q. Nanoscale; 2017 Oct 12; 9(39):14998-15004. PubMed ID: 28956583 [Abstract] [Full Text] [Related]
13. Fano resonances in plasmonic nanoparticle aggregates. Mirin NA, Bao K, Nordlander P. J Phys Chem A; 2009 Apr 23; 113(16):4028-34. PubMed ID: 19371111 [Abstract] [Full Text] [Related]
14. Fano resonance in dual-disk ring plasmonic nanostructures. Niu L, Zhang JB, Fu YH, Kulkarni S, Luky Anchuk B. Opt Express; 2011 Nov 07; 19(23):22974-81. PubMed ID: 22109176 [Abstract] [Full Text] [Related]
15. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. Fu YH, Zhang JB, Yu YF, Luk'yanchuk B. ACS Nano; 2012 Jun 26; 6(6):5130-7. PubMed ID: 22577794 [Abstract] [Full Text] [Related]
16. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Wang J, Fan C, He J, Ding P, Liang E, Xue Q. Opt Express; 2013 Jan 28; 21(2):2236-44. PubMed ID: 23389204 [Abstract] [Full Text] [Related]
17. Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach. Butet J, Martin OJ. Nanoscale; 2014 Dec 21; 6(24):15262-70. PubMed ID: 25381752 [Abstract] [Full Text] [Related]
18. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation. Liu SD, Leong ES, Li GC, Hou Y, Deng J, Teng JH, Ong HC, Lei DY. ACS Nano; 2016 Jan 26; 10(1):1442-53. PubMed ID: 26727133 [Abstract] [Full Text] [Related]
19. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances. Zhang S, Zhu X, Xiao W, Shi H, Wang Y, Chen Z, Chen Y, Sun K, Muskens OL, De Groot CH, Liu SD, Duan H. Nanotechnology; 2020 Aug 07; 31(32):325202. PubMed ID: 32340011 [Abstract] [Full Text] [Related]
20. Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells. Chen J, Shen Q, Chen Z, Wang Q, Tang C, Wang Z. J Chem Phys; 2012 Jun 07; 136(21):214703. PubMed ID: 22697562 [Abstract] [Full Text] [Related] Page: [Next] [New Search]