These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
928 related items for PubMed ID: 19309291
1. Brain structures involved in visual search in the presence and absence of color singletons. Talsma D, Coe B, Munoz DP, Theeuwes J. J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291 [Abstract] [Full Text] [Related]
2. Sources of top-down control in visual search. Weidner R, Krummenacher J, Reimann B, Müller HJ, Fink GR. J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412 [Abstract] [Full Text] [Related]
3. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control. Thiel CM, Fink GR. Neuroscience; 2008 Mar 18; 152(2):381-90. PubMed ID: 18272290 [Abstract] [Full Text] [Related]
4. N2pc and attentional capture by colour and orientation-singletons in pure and mixed visual search tasks. Rodríguez Holguín S, Doallo S, Vizoso C, Cadaveira F. Int J Psychophysiol; 2009 Sep 18; 73(3):279-86. PubMed ID: 19409424 [Abstract] [Full Text] [Related]
5. ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention. Natale E, Marzi CA, Girelli M, Pavone EF, Pollmann S. Eur J Neurosci; 2006 May 18; 23(9):2511-21. PubMed ID: 16706858 [Abstract] [Full Text] [Related]
6. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities. Santangelo V, Olivetti Belardinelli M, Spence C, Macaluso E. J Cogn Neurosci; 2009 Dec 18; 21(12):2384-97. PubMed ID: 19199406 [Abstract] [Full Text] [Related]
7. The inferior temporal lobe mediates distracter-resistant visual search of patients with spatial neglect. Ptak R, Valenza N. J Cogn Neurosci; 2005 May 18; 17(5):788-99. PubMed ID: 15904545 [Abstract] [Full Text] [Related]
8. Attentional control of task and response in lateral and medial frontal cortex: brain activity and reaction time distributions. Aarts E, Roelofs A, van Turennout M. Neuropsychologia; 2009 Aug 18; 47(10):2089-99. PubMed ID: 19467359 [Abstract] [Full Text] [Related]
9. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting. Zhou X, Chen Q. Neuropsychologia; 2008 Sep 18; 46(11):2766-75. PubMed ID: 18597795 [Abstract] [Full Text] [Related]
10. Attentional systems in target and distractor processing: a combined ERP and fMRI study. Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DE. Neuroimage; 2004 Jun 18; 22(2):530-40. PubMed ID: 15193581 [Abstract] [Full Text] [Related]
11. Identification of attention and cognitive control networks in a parametric auditory fMRI study. Westerhausen R, Moosmann M, Alho K, Belsby SO, Hämäläinen H, Medvedev S, Specht K, Hugdahl K. Neuropsychologia; 2010 Jun 18; 48(7):2075-81. PubMed ID: 20363236 [Abstract] [Full Text] [Related]
12. Electrophysiological evidence of the capture of visual attention. Hickey C, McDonald JJ, Theeuwes J. J Cogn Neurosci; 2006 Apr 18; 18(4):604-13. PubMed ID: 16768363 [Abstract] [Full Text] [Related]
13. Appearing and disappearing stimuli trigger a reflexive modulation of visual cortical activity. Hopfinger JB, Maxwell JS. Brain Res Cogn Brain Res; 2005 Sep 18; 25(1):48-56. PubMed ID: 15907377 [Abstract] [Full Text] [Related]
14. On the temporal relation of top-down and bottom-up mechanisms during guidance of attention. Wykowska A, Schubö A. J Cogn Neurosci; 2010 Apr 18; 22(4):640-54. PubMed ID: 19309292 [Abstract] [Full Text] [Related]
15. Tracking the location of visuospatial attention in a contingent capture paradigm. Leblanc E, Prime DJ, Jolicoeur P. J Cogn Neurosci; 2008 Apr 18; 20(4):657-71. PubMed ID: 18052780 [Abstract] [Full Text] [Related]
16. Effects of feature-selective and spatial attention at different stages of visual processing. Andersen SK, Fuchs S, Müller MM. J Cogn Neurosci; 2011 Jan 18; 23(1):238-46. PubMed ID: 19702461 [Abstract] [Full Text] [Related]
17. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Doricchi F, Macci E, Silvetti M, Macaluso E. Cereb Cortex; 2010 Jul 18; 20(7):1574-85. PubMed ID: 19846472 [Abstract] [Full Text] [Related]
18. The neural mechanisms of top-down attentional control. Hopfinger JB, Buonocore MH, Mangun GR. Nat Neurosci; 2000 Mar 18; 3(3):284-91. PubMed ID: 10700262 [Abstract] [Full Text] [Related]
19. Electrophysiological indices of target and distractor processing in visual search. Hickey C, Di Lollo V, McDonald JJ. J Cogn Neurosci; 2009 Apr 18; 21(4):760-75. PubMed ID: 18564048 [Abstract] [Full Text] [Related]
20. Attending to multiple visual streams: interactions between location-based and category-based attentional selection. Fagioli S, Macaluso E. J Cogn Neurosci; 2009 Aug 18; 21(8):1628-41. PubMed ID: 18823252 [Abstract] [Full Text] [Related] Page: [Next] [New Search]