These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL, Chang JS. Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [Abstract] [Full Text] [Related]
3. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL. Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951 [Abstract] [Full Text] [Related]
4. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B. Prep Biochem Biotechnol; 2016 Sep; 46(2):150-6. PubMed ID: 25807048 [Abstract] [Full Text] [Related]
5. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Feng Y, Li C, Zhang D. Bioresour Technol; 2011 Jan; 102(1):101-5. PubMed ID: 20620053 [Abstract] [Full Text] [Related]
6. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Liu ZY, Wang GC, Zhou BC. Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270 [Abstract] [Full Text] [Related]
7. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G. Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507 [Abstract] [Full Text] [Related]
8. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H, Gao Z, Yin F, Ji X, Huang H. Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [Abstract] [Full Text] [Related]
9. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H, Gao Z, Zhang Q, Huang H, Ji X, Sun H, Dou C. Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [Abstract] [Full Text] [Related]
11. A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques. Patiño R, Janssen M, von Stockar U. Biotechnol Bioeng; 2007 Mar 01; 96(4):757-67. PubMed ID: 16952149 [Abstract] [Full Text] [Related]
12. Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. O'Grady J, Morgan JA. Bioprocess Biosyst Eng; 2011 Jan 01; 34(1):121-5. PubMed ID: 20976474 [Abstract] [Full Text] [Related]
13. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Münkel R, Schmid-Staiger U, Werner A, Hirth T. Biotechnol Bioeng; 2013 Nov 01; 110(11):2882-93. PubMed ID: 23616347 [Abstract] [Full Text] [Related]
14. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Griffiths MJ, van Hille RP, Harrison ST. Appl Microbiol Biotechnol; 2014 Mar 01; 98(5):2345-56. PubMed ID: 24413971 [Abstract] [Full Text] [Related]
15. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Bhola V, Desikan R, Santosh SK, Subburamu K, Sanniyasi E, Bux F. J Biosci Bioeng; 2011 Mar 01; 111(3):377-82. PubMed ID: 21185776 [Abstract] [Full Text] [Related]
16. A two-stage cultivation process for the growth enhancement of Chlorella vulgaris. Yen HW, Chang JT. Bioprocess Biosyst Eng; 2013 Nov 01; 36(11):1797-801. PubMed ID: 23411876 [Abstract] [Full Text] [Related]
17. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL, Chang JS. Biotechnol J; 2011 Nov 01; 6(11):1358-66. PubMed ID: 21381209 [Abstract] [Full Text] [Related]