These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 19323510

  • 1. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor.
    Valmikinathan CM, Defroda S, Yu X.
    Biomacromolecules; 2009 May 11; 10(5):1084-9. PubMed ID: 19323510
    [Abstract] [Full Text] [Related]

  • 2. Encapsulation of proteins in poly(L-lactide-co-caprolactone) fibers by emulsion electrospinning.
    Li X, Su Y, Liu S, Tan L, Mo X, Ramakrishna S.
    Colloids Surf B Biointerfaces; 2010 Feb 01; 75(2):418-24. PubMed ID: 19836931
    [Abstract] [Full Text] [Related]

  • 3. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release.
    Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S.
    Biomacromolecules; 2006 Apr 01; 7(4):1049-57. PubMed ID: 16602720
    [Abstract] [Full Text] [Related]

  • 4. Silk fibroin matrices for the controlled release of nerve growth factor (NGF).
    Uebersax L, Mattotti M, Papaloïzos M, Merkle HP, Gander B, Meinel L.
    Biomaterials; 2007 Oct 01; 28(30):4449-60. PubMed ID: 17643485
    [Abstract] [Full Text] [Related]

  • 5. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S.
    Tissue Eng Part A; 2008 Nov 01; 14(11):1787-97. PubMed ID: 18657027
    [Abstract] [Full Text] [Related]

  • 6. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning.
    Liu JJ, Wang CY, Wang JG, Ruan HJ, Fan CY.
    J Biomed Mater Res A; 2011 Jan 01; 96(1):13-20. PubMed ID: 20949481
    [Abstract] [Full Text] [Related]

  • 7. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration.
    Kuihua Z, Chunyang W, Cunyi F, Xiumei M.
    J Biomed Mater Res A; 2014 Aug 01; 102(8):2680-91. PubMed ID: 23963979
    [Abstract] [Full Text] [Related]

  • 8. Multifunctional protein-encapsulated polycaprolactone scaffolds: fabrication and in vitro assessment for tissue engineering.
    Ozkan S, Kalyon DM, Yu X, McKelvey CA, Lowinger M.
    Biomaterials; 2009 Sep 01; 30(26):4336-47. PubMed ID: 19481253
    [Abstract] [Full Text] [Related]

  • 9. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin.
    Koh HS, Yong T, Chan CK, Ramakrishna S.
    Biomaterials; 2008 Sep 01; 29(26):3574-82. PubMed ID: 18533251
    [Abstract] [Full Text] [Related]

  • 10. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May 01; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 11. Degradation behaviors of electrospun resorbable polyester nanofibers.
    Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S.
    Tissue Eng Part B Rev; 2009 Sep 01; 15(3):333-51. PubMed ID: 19459780
    [Abstract] [Full Text] [Related]

  • 12. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering.
    Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X, Ramakrishna S, Al-Deyab SS, El-Newehy M.
    Acta Biomater; 2012 Feb 01; 8(2):763-71. PubMed ID: 22100346
    [Abstract] [Full Text] [Related]

  • 13. Controlled release of nerve growth factor from fibrin gel.
    Bhang SH, Jeon O, Choi CY, Kwon YH, Kim BS.
    J Biomed Mater Res A; 2007 Mar 15; 80(4):998-1002. PubMed ID: 17117469
    [Abstract] [Full Text] [Related]

  • 14. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts.
    Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S.
    Biomacromolecules; 2005 Mar 15; 6(5):2583-9. PubMed ID: 16153095
    [Abstract] [Full Text] [Related]

  • 15. Ionically cross-linked chitosan microspheres for controlled release of bioactive nerve growth factor.
    Zeng W, Huang J, Hu X, Xiao W, Rong M, Yuan Z, Luo Z.
    Int J Pharm; 2011 Dec 15; 421(2):283-90. PubMed ID: 22001532
    [Abstract] [Full Text] [Related]

  • 16. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material.
    Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang IK, Kwon OH.
    J Biosci Bioeng; 2005 Jul 15; 100(1):43-9. PubMed ID: 16233849
    [Abstract] [Full Text] [Related]

  • 17. Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds.
    Liu C, Wang C, Zhao Q, Li X, Xu F, Yao X, Wang M.
    Biomed Mater; 2018 May 04; 13(4):044107. PubMed ID: 29537390
    [Abstract] [Full Text] [Related]

  • 18. Fabrication, surface properties and protein encapsulation/release studies of electrospun gelatin nanofibers.
    Liu S, Su Y, Chen Y.
    J Biomater Sci Polym Ed; 2011 May 04; 22(7):945-55. PubMed ID: 20566066
    [Abstract] [Full Text] [Related]

  • 19. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, Ramakrishna S.
    Acta Biomater; 2009 Sep 04; 5(7):2560-9. PubMed ID: 19269270
    [Abstract] [Full Text] [Related]

  • 20. Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality.
    Martins A, Duarte AR, Faria S, Marques AP, Reis RL, Neves NM.
    Biomaterials; 2010 Aug 04; 31(22):5875-85. PubMed ID: 20452016
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.