These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 19323540

  • 1. Statistical theory of protein sequence design by random mutation.
    Bhattacherjee A, Biswas P.
    J Phys Chem B; 2009 Apr 23; 113(16):5520-7. PubMed ID: 19323540
    [Abstract] [Full Text] [Related]

  • 2. Combinatorial design of protein sequences with applications to lattice and real proteins.
    Bhattacherjee A, Biswas P.
    J Chem Phys; 2009 Sep 28; 131(12):125101. PubMed ID: 19791919
    [Abstract] [Full Text] [Related]

  • 3. Statistical theory for protein ensembles with designed energy landscapes.
    Biswas P, Zou J, Saven JG.
    J Chem Phys; 2005 Oct 15; 123(15):154908. PubMed ID: 16252973
    [Abstract] [Full Text] [Related]

  • 4. Role of foldability and stability in designing real protein sequences.
    Biswas P, Bhattacherjee A.
    Phys Chem Chem Phys; 2011 May 28; 13(20):9223-31. PubMed ID: 21468433
    [Abstract] [Full Text] [Related]

  • 5. Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure.
    Zou J, Saven JG.
    J Mol Biol; 2000 Feb 11; 296(1):281-94. PubMed ID: 10656832
    [Abstract] [Full Text] [Related]

  • 6. Designing misfolded proteins by energy landscaping.
    Bhattacherjee A, Biswas P.
    J Phys Chem B; 2011 Jan 13; 115(1):113-9. PubMed ID: 21158416
    [Abstract] [Full Text] [Related]

  • 7. Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure.
    Kono H, Saven JG.
    J Mol Biol; 2001 Feb 23; 306(3):607-28. PubMed ID: 11178917
    [Abstract] [Full Text] [Related]

  • 8. Design of amino acid sequences to fold into C(alpha)-model proteins.
    Amatori A, Tiana G, Sutto L, Ferkinghoff-Borg J, Trovato A, Broglia RA.
    J Chem Phys; 2005 Aug 01; 123(5):054904. PubMed ID: 16108690
    [Abstract] [Full Text] [Related]

  • 9. Coarse-grained lattice model simulations of sequence-structure fitness of a ribosome-inactivating protein.
    Olson MA, Yeh IC, Lee MS.
    Biopolymers; 2008 Feb 01; 89(2):153-9. PubMed ID: 17985366
    [Abstract] [Full Text] [Related]

  • 10. Why are proteins so robust to site mutations?
    Taverna DM, Goldstein RA.
    J Mol Biol; 2002 Jan 18; 315(3):479-84. PubMed ID: 11786027
    [Abstract] [Full Text] [Related]

  • 11. Investigation of de novo totally random biosequences, Part II: On the folding frequency in a totally random library of de novo proteins obtained by phage display.
    Chiarabelli C, Vrijbloed JW, De Lucrezia D, Thomas RM, Stano P, Polticelli F, Ottone T, Papa E, Luisi PL.
    Chem Biodivers; 2006 Aug 18; 3(8):840-59. PubMed ID: 17193317
    [Abstract] [Full Text] [Related]

  • 12. Computational basis of knowledge-based conformational probabilities derived from local- and long-range interactions in proteins.
    Ormeci L, Gursoy A, Tunca G, Erman B.
    Proteins; 2007 Jan 01; 66(1):29-40. PubMed ID: 17039547
    [Abstract] [Full Text] [Related]

  • 13. Statistical potentials for improved structurally constrained evolutionary models.
    Kleinman CL, Rodrigue N, Lartillot N, Philippe H.
    Mol Biol Evol; 2010 Jul 01; 27(7):1546-60. PubMed ID: 20159780
    [Abstract] [Full Text] [Related]

  • 14. Lattices for ab initio protein structure prediction.
    Pierri CL, De Grassi A, Turi A.
    Proteins; 2008 Nov 01; 73(2):351-61. PubMed ID: 18433064
    [Abstract] [Full Text] [Related]

  • 15. Selecting sequences that fold into a defined 3D structure: A new approach for protein design based on molecular dynamics and energetics.
    Morra G, Baragli C, Colombo G.
    Biophys Chem; 2010 Feb 01; 146(2-3):76-84. PubMed ID: 19926206
    [Abstract] [Full Text] [Related]

  • 16. Long- and short-range interactions in native protein structures are consistent/minimally frustrated in sequence space.
    Miyazawa S, Jernigan RL.
    Proteins; 2003 Jan 01; 50(1):35-43. PubMed ID: 12471597
    [Abstract] [Full Text] [Related]

  • 17. A statistical model for predicting protein folding rates from amino acid sequence with structural class information.
    Gromiha MM.
    J Chem Inf Model; 2005 Jan 01; 45(2):494-501. PubMed ID: 15807515
    [Abstract] [Full Text] [Related]

  • 18. Effect of alphabet size and foldability requirements on protein structure designability.
    Buchler NE, Goldstein RA.
    Proteins; 1999 Jan 01; 34(1):113-24. PubMed ID: 10336377
    [Abstract] [Full Text] [Related]

  • 19. Another look at the conditions for the extraction of protein knowledge-based potentials.
    Betancourt MR.
    Proteins; 2009 Jul 01; 76(1):72-85. PubMed ID: 19089977
    [Abstract] [Full Text] [Related]

  • 20. Probabilistic approach to the design of symmetric protein quaternary structures.
    Fu X, Kono H, Saven JG.
    Protein Eng; 2003 Dec 01; 16(12):971-7. PubMed ID: 14983077
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.