These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 19324024

  • 1. Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans.
    Prasannan P, Suliman HS, Robertus JD.
    Biochem Biophys Res Commun; 2009 May 15; 382(4):730-4. PubMed ID: 19324024
    [Abstract] [Full Text] [Related]

  • 2. Structural analysis of a fungal methionine synthase with substrates and inhibitors.
    Ubhi D, Kago G, Monzingo AF, Robertus JD.
    J Mol Biol; 2014 Apr 17; 426(8):1839-47. PubMed ID: 24524835
    [Abstract] [Full Text] [Related]

  • 3. Structure of Candida albicans methionine synthase determined by employing surface residue mutagenesis.
    Ubhi D, Kavanagh KL, Monzingo AF, Robertus JD.
    Arch Biochem Biophys; 2011 Sep 01; 513(1):19-26. PubMed ID: 21689631
    [Abstract] [Full Text] [Related]

  • 4. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme.
    Jarrett JT, Hoover DM, Ludwig ML, Matthews RG.
    Biochemistry; 1998 Sep 08; 37(36):12649-58. PubMed ID: 9730838
    [Abstract] [Full Text] [Related]

  • 5. Dissecting the catalytic mechanism of betaine-homocysteine S-methyltransferase by use of intrinsic tryptophan fluorescence and site-directed mutagenesis.
    Castro C, Gratson AA, Evans JC, Jiracek J, Collinsová M, Ludwig ML, Garrow TA.
    Biochemistry; 2004 May 11; 43(18):5341-51. PubMed ID: 15122900
    [Abstract] [Full Text] [Related]

  • 6. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors.
    Elshihawy H, Helal MA, Said M, Hammad MA.
    Bioorg Med Chem; 2014 Jan 01; 22(1):550-8. PubMed ID: 24268539
    [Abstract] [Full Text] [Related]

  • 7. Selective peptidic and peptidomimetic inhibitors of Candida albicans myristoylCoA: protein N-myristoyltransferase: a new approach to antifungal therapy.
    Sikorski JA, Devadas B, Zupec ME, Freeman SK, Brown DL, Lu HF, Nagarajan S, Mehta PP, Wade AC, Kishore NS, Bryant ML, Getman DP, McWherter CA, Gordon JI.
    Biopolymers; 1997 Jan 01; 43(1):43-71. PubMed ID: 9174411
    [Abstract] [Full Text] [Related]

  • 8. Zinc-homocysteine binding in cobalamin-dependent methionine synthase and its role in the substrate activation: DFT, ONIOM, and QM/MM molecular dynamics studies.
    Abdel-Azeim S, Li X, Chung LW, Morokuma K.
    J Comput Chem; 2011 Nov 30; 32(15):3154-67. PubMed ID: 21837727
    [Abstract] [Full Text] [Related]

  • 9. Conversion of homocysteine to methionine by methionine synthase: a density functional study.
    Jensen KP, Ryde U.
    J Am Chem Soc; 2003 Nov 19; 125(46):13970-1. PubMed ID: 14611228
    [Abstract] [Full Text] [Related]

  • 10. Construction, purification, and functional characterization of His-tagged Candida albicans glucosamine-6-phosphate synthase expressed in Escherichia coli.
    Olchowy J, Kur K, Sachadyn P, Milewski S.
    Protein Expr Purif; 2006 Apr 19; 46(2):309-15. PubMed ID: 16169745
    [Abstract] [Full Text] [Related]

  • 11. Elucidation of active site residues of Arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols.
    Chua CS, Biermann D, Goo KS, Sim TS.
    Phytochemistry; 2008 Jan 19; 69(1):66-75. PubMed ID: 17719613
    [Abstract] [Full Text] [Related]

  • 12. Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase.
    Bandarian V, Matthews RG.
    Biochemistry; 2001 Apr 24; 40(16):5056-64. PubMed ID: 11305922
    [Abstract] [Full Text] [Related]

  • 13. Potential anti-infective targets in pathogenic yeasts: structure and properties of 3,4-dihydroxy-2-butanone 4-phosphate synthase of Candida albicans.
    Echt S, Bauer S, Steinbacher S, Huber R, Bacher A, Fischer M.
    J Mol Biol; 2004 Aug 20; 341(4):1085-96. PubMed ID: 15328619
    [Abstract] [Full Text] [Related]

  • 14. Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli.
    Zhou ZS, Peariso K, Penner-Hahn JE, Matthews RG.
    Biochemistry; 1999 Nov 30; 38(48):15915-26. PubMed ID: 10625458
    [Abstract] [Full Text] [Related]

  • 15. The gene for cobalamin-independent methionine synthase is essential in Candida albicans: a potential antifungal target.
    Suliman HS, Appling DR, Robertus JD.
    Arch Biochem Biophys; 2007 Nov 15; 467(2):218-26. PubMed ID: 17935688
    [Abstract] [Full Text] [Related]

  • 16. Engineering Candida albicans glucosamine-6-phosphate synthase for efficient enzyme purification.
    Czarnecka J, Kwiatkowska K, Gabriel I, Wojciechowski M, Milewski S.
    J Mol Recognit; 2012 Nov 15; 25(11):564-70. PubMed ID: 23108616
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T, Samaranayake LP, Jayatilake JA, Egusa H, Yatani H, Seneviratne CJ.
    Int J Antimicrob Agents; 2009 Oct 15; 34(4):333-9. PubMed ID: 19376687
    [Abstract] [Full Text] [Related]

  • 20. Phosphorylation of glucosamine-6-phosphate synthase is important but not essential for germination and mycelial growth of Candida albicans.
    Gabriel I, Olchowy J, Stanisławska-Sachadyn A, Mio T, Kur J, Milewski S.
    FEMS Microbiol Lett; 2004 Jun 01; 235(1):73-80. PubMed ID: 15158264
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.