These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
450 related items for PubMed ID: 19334762
1. Changes in polysaccharide and protein composition of cell walls in grape berry skin (Cv. Shiraz) during ripening and over-ripening. Vicens A, Fournand D, Williams P, Sidhoum L, Moutounet M, Doco T. J Agric Food Chem; 2009 Apr 08; 57(7):2955-60. PubMed ID: 19334762 [Abstract] [Full Text] [Related]
2. Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L.) and apple (Malus domestica) skins from acid hydrolysis monosaccharide profiles. Arnous A, Meyer AS. J Agric Food Chem; 2009 May 13; 57(9):3611-9. PubMed ID: 19371033 [Abstract] [Full Text] [Related]
3. Effect of flash release and pectinolytic enzyme treatments on wine polysaccharide composition. Doco T, Williams P, Cheynier V. J Agric Food Chem; 2007 Aug 08; 55(16):6643-9. PubMed ID: 17629303 [Abstract] [Full Text] [Related]
4. Compositional changes in cell wall polysaccharides from Japanese plum ( Prunus salicina Lindl.) during growth and on-tree ripening. Ponce NM, Ziegler VH, Stortz CA, Sozzi GO. J Agric Food Chem; 2010 Feb 24; 58(4):2562-70. PubMed ID: 20099830 [Abstract] [Full Text] [Related]
5. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Hernández-Hierro JM, Quijada-Morín N, Martínez-Lapuente L, Guadalupe Z, Ayestarán B, Rivas-Gonzalo JC, Escribano-Bailón MT. Food Chem; 2014 Mar 01; 146():41-7. PubMed ID: 24176311 [Abstract] [Full Text] [Related]
6. Ripening-induced changes in grape skin proanthocyanidins modify their interaction with cell walls. Bindon KA, Kennedy JA. J Agric Food Chem; 2011 Mar 23; 59(6):2696-707. PubMed ID: 21351801 [Abstract] [Full Text] [Related]
7. Tissue-specific and developmental modifications of grape cell walls influence the adsorption of proanthocyanidins. Bindon KA, Bacic A, Kennedy JA. J Agric Food Chem; 2012 Sep 12; 60(36):9249-60. PubMed ID: 22860923 [Abstract] [Full Text] [Related]
8. Proteome analysis of grape skins during ripening. Deytieux C, Geny L, Lapaillerie D, Claverol S, Bonneu M, Donèche B. J Exp Bot; 2007 Sep 12; 58(7):1851-62. PubMed ID: 17426054 [Abstract] [Full Text] [Related]
9. Composition and cellular localization of tannins in grape seeds during maturation. Geny L, Saucier C, Bracco S, Daviaud F, Glories Y. J Agric Food Chem; 2003 Dec 31; 51(27):8051-4. PubMed ID: 14690395 [Abstract] [Full Text] [Related]
10. Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench). Sengkhamparn N, Verhoef R, Schols HA, Sajjaanantakul T, Voragen AG. Carbohydr Res; 2009 Sep 28; 344(14):1824-32. PubMed ID: 19061990 [Abstract] [Full Text] [Related]
11. Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: Vintage and ripeness effects. Garrido-Bañuelos G, Buica A, Schückel J, Zietsman AJJ, Willats WGT, Moore JP, Du Toit WJ. Food Chem; 2019 Apr 25; 278():36-46. PubMed ID: 30583384 [Abstract] [Full Text] [Related]
12. Dissecting the polysaccharide-rich grape cell wall changes during winemaking using combined high-throughput and fractionation methods. Gao Y, Fangel JU, Willats WG, Vivier MA, Moore JP. Carbohydr Polym; 2015 Nov 20; 133():567-77. PubMed ID: 26344315 [Abstract] [Full Text] [Related]
13. Application and comparison of four selected procedures for the isolation of cell-wall material from the skin of grapes cv. Monastrell. Apolinar-Valiente R, Romero-Cascales I, López-Roca JM, Gómez-Plaza E, Ros-García JM. Anal Chim Acta; 2010 Feb 15; 660(1-2):206-10. PubMed ID: 20103164 [Abstract] [Full Text] [Related]
14. Composition and cellular localization of tannins in Cabernet Sauvignon skins during growth. Gagné S, Saucier C, Gény L. J Agric Food Chem; 2006 Dec 13; 54(25):9465-71. PubMed ID: 17147434 [Abstract] [Full Text] [Related]
15. Ripening grape berries remain hydraulically connected to the shoot. Keller M, Smith JP, Bondada BR. J Exp Bot; 2006 Dec 13; 57(11):2577-87. PubMed ID: 16868045 [Abstract] [Full Text] [Related]
16. Impact of grape variety, berry maturity and size on the extractability of skin polyphenols during model wine-like maceration experiments. Abi-Habib E, Poncet-Legrand C, Roi S, Carrillo S, Doco T, Vernhet A. J Sci Food Agric; 2021 Jun 13; 101(8):3257-3269. PubMed ID: 33222281 [Abstract] [Full Text] [Related]
17. Differences in berry skin and pulp cell wall polysaccharides from ripe and overripe Shiraz grapes evaluated using glycan profiling reveals extensin-rich flesh. Gao Y, Fangel JU, Willats WGT, Vivier MA, Moore JP. Food Chem; 2021 Nov 30; 363():130180. PubMed ID: 34157558 [Abstract] [Full Text] [Related]
18. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Chervin C, Tira-Umphon A, Terrier N, Zouine M, Severac D, Roustan JP. Physiol Plant; 2008 Nov 30; 134(3):534-46. PubMed ID: 18785902 [Abstract] [Full Text] [Related]
19. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification. Bindon KA, Smith PA, Holt H, Kennedy JA. J Agric Food Chem; 2010 Oct 13; 58(19):10736-46. PubMed ID: 20845924 [Abstract] [Full Text] [Related]
20. Influence of berry ripeness on accumulation, composition and extractability of skin and seed flavonoids in cv. Sangiovese (Vitis vinifera L.). Allegro G, Pastore C, Valentini G, Muzzi E, Filippetti I. J Sci Food Agric; 2016 Oct 13; 96(13):4553-9. PubMed ID: 26888489 [Abstract] [Full Text] [Related] Page: [Next] [New Search]