These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
450 related items for PubMed ID: 19334762
21. Changes in cell wall composition during ripening of grape berries. Nunan KJ, Sims IM, Bacic A, Robinson SP, Fincher GB. Plant Physiol; 1998 Nov; 118(3):783-92. PubMed ID: 9808722 [Abstract] [Full Text] [Related]
22. Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. Cholet C, Delsart C, Petrel M, Gontier E, Grimi N, L'hyvernay A, Ghidossi R, Vorobiev E, Mietton-Peuchot M, Gény L. J Agric Food Chem; 2014 Apr 02; 62(13):2925-34. PubMed ID: 24617601 [Abstract] [Full Text] [Related]
23. Cell wall acyl-lipids, proteins and polysaccharides in mature and germinated olive pollen. Rodríguez-Rosales MP, Ferrol N, Roldán M, Belver A, Donaire JP. Rev Esp Fisiol; 1990 Dec 02; 46(4):371-7. PubMed ID: 2099534 [Abstract] [Full Text] [Related]
25. Retention of Proanthocyanidin in Wine-like Solution Is Conferred by a Dynamic Interaction between Soluble and Insoluble Grape Cell Wall Components. Bindon KA, Li S, Kassara S, Smith PA. J Agric Food Chem; 2016 Nov 09; 64(44):8406-8419. PubMed ID: 27616021 [Abstract] [Full Text] [Related]
27. Extractability of Low Molecular Mass Flavanols and Flavonols from Red Grape Skins. Relationship to Cell Wall Composition at Different Ripeness Stages. Quijada-Morín N, Hernández-Hierro JM, Rivas-Gonzalo JC, Escribano-Bailón MT. J Agric Food Chem; 2015 Sep 09; 63(35):7654-62. PubMed ID: 25876850 [Abstract] [Full Text] [Related]
28. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Krasnow M, Matthews M, Shackel K. J Exp Bot; 2008 Sep 09; 59(4):849-59. PubMed ID: 18272917 [Abstract] [Full Text] [Related]
29. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Castillo-Muñoz N, Fernández-González M, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I. J Agric Food Chem; 2009 Sep 09; 57(17):7883-91. PubMed ID: 19673489 [Abstract] [Full Text] [Related]
30. Factors affecting skin tannin extractability in ripening grapes. Bindon KA, Madani SH, Pendleton P, Smith PA, Kennedy JA. J Agric Food Chem; 2014 Feb 05; 62(5):1130-41. PubMed ID: 24432763 [Abstract] [Full Text] [Related]
31. Grape berry plasma membrane proteome analysis and its differential expression during ripening. Zhang J, Ma H, Feng J, Zeng L, Wang Z, Chen S. J Exp Bot; 2008 Feb 05; 59(11):2979-90. PubMed ID: 18550598 [Abstract] [Full Text] [Related]
33. Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening. Canals R, Llaudy MC, Valls J, Canals JM, Zamora F. J Agric Food Chem; 2005 May 18; 53(10):4019-25. PubMed ID: 15884833 [Abstract] [Full Text] [Related]
36. Investigating the relationship between cell wall polysaccharide composition and the extractability of grape phenolic compounds into Shiraz wines. Part II: Extractability during fermentation into wines made from grapes of different ripeness levels. Garrido-Bañuelos G, Buica A, Schückel J, Zietsman AJJ, Willats WGT, Moore JP, Du Toit WJ. Food Chem; 2019 Apr 25; 278():26-35. PubMed ID: 30583371 [Abstract] [Full Text] [Related]
37. Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF. Giribaldi M, Perugini I, Sauvage FX, Schubert A. Proteomics; 2007 Sep 25; 7(17):3154-70. PubMed ID: 17683049 [Abstract] [Full Text] [Related]