These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


298 related items for PubMed ID: 19340832

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges.
    Chun H, Chung TD, Kim HC.
    Anal Chem; 2005 Apr 15; 77(8):2490-5. PubMed ID: 15828785
    [Abstract] [Full Text] [Related]

  • 3. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.
    Joo S, Kim KH, Kim HC, Chung TD.
    Biosens Bioelectron; 2010 Feb 15; 25(6):1509-15. PubMed ID: 20004091
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Coincidence detection of heterogeneous cell populations from whole blood with coplanar electrodes in a microfluidic impedance cytometer.
    Hassan U, Bashir R.
    Lab Chip; 2014 Nov 21; 14(22):4370-81. PubMed ID: 25231594
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. High-throughput biophysical measurement of human red blood cells.
    Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y.
    Lab Chip; 2012 Jul 21; 12(14):2560-7. PubMed ID: 22581052
    [Abstract] [Full Text] [Related]

  • 9. Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation.
    Cheung K, Gawad S, Renaud P.
    Cytometry A; 2005 Jun 21; 65(2):124-32. PubMed ID: 15825181
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J, Wolbers F, Andersson H, Dacosta RS, Wilson BC, Vermes I, van den Berg A.
    Electrophoresis; 2004 Nov 21; 25(21-22):3740-5. PubMed ID: 15565697
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P, Morales AM, Ponce P, Lee LP, Simmons BA, Davalos RV.
    Biomed Microdevices; 2008 Oct 21; 10(5):661-70. PubMed ID: 18484178
    [Abstract] [Full Text] [Related]

  • 15. Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device.
    Zhu T, Pei Z, Huang J, Xiong C, Shi S, Fang J.
    Lab Chip; 2010 Jun 21; 10(12):1557-60. PubMed ID: 20517558
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Identification, characterization and manipulation of Babesia-bovis-infected red blood cells using microfluidics technology.
    Nascimento E, Silva T, Oliva A.
    Parassitologia; 2007 May 21; 49 Suppl 1():45-52. PubMed ID: 17691607
    [Abstract] [Full Text] [Related]

  • 19. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH, Hsiung SK, Chen CY, Tsai ML, Lee GB.
    Biomed Microdevices; 2007 Aug 21; 9(4):533-43. PubMed ID: 17508288
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.