These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 19345156
1. Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes. Kontani R, Tsujimura S, Kano K. Bioelectrochemistry; 2009 Sep; 76(1-2):10-3. PubMed ID: 19345156 [Abstract] [Full Text] [Related]
2. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K. Phys Chem Chem Phys; 2007 Apr 21; 9(15):1793-801. PubMed ID: 17415490 [Abstract] [Full Text] [Related]
3. Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. Djoko KY, Chong LX, Wedd AG, Xiao Z. J Am Chem Soc; 2010 Feb 17; 132(6):2005-15. PubMed ID: 20088522 [Abstract] [Full Text] [Related]
4. Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Zhang L, Cui H, Zou Z, Garakani TM, Novoa-Henriquez C, Jooyeh B, Schwaneberg U. Angew Chem Int Ed Engl; 2019 Mar 26; 58(14):4562-4565. PubMed ID: 30689276 [Abstract] [Full Text] [Related]
5. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Zhou Y, Zhi J, Zou Y, Zhang W, Lee ST. Anal Chem; 2008 Jun 01; 80(11):4141-6. PubMed ID: 18447324 [Abstract] [Full Text] [Related]
6. Fabrication of carbon-felt-based multi-enzyme immobilized anodes to oxidize sucrose for biofuel cells. Handa Y, Yamagiwa K, Ikeda Y, Yanagisawa Y, Watanabe S, Yabuuchi N, Komaba S. Chemphyschem; 2014 Jul 21; 15(10):2145-51. PubMed ID: 24826925 [Abstract] [Full Text] [Related]
7. Development and testing of bioelectrochemical reactors converting wastewater organics into hydrogen peroxide. Modin O, Fukushi K. Water Sci Technol; 2012 Jul 21; 66(4):831-6. PubMed ID: 22766874 [Abstract] [Full Text] [Related]
8. Enzyme-modified nanoparticles using biomimetically synthesized silica. Zamora P, Narváez A, Domínguez E. Bioelectrochemistry; 2009 Sep 21; 76(1-2):100-6. PubMed ID: 19540173 [Abstract] [Full Text] [Related]
9. Plasma functionalized carbon electrode for laccase-catalyzed oxygen reduction by direct electron transfer. Ardhaoui M, Zheng M, Pulpytel J, Dowling D, Jolivalt C, Khonsari FA. Bioelectrochemistry; 2013 Jun 21; 91():52-61. PubMed ID: 23416361 [Abstract] [Full Text] [Related]
10. Towards a high potential biocathode based on direct bioelectrochemistry between horseradish peroxidase and hierarchically structured carbon nanotubes. Jia W, Schwamborn S, Jin C, Xia W, Muhler M, Schuhmann W, Stoica L. Phys Chem Chem Phys; 2010 Sep 14; 12(34):10088-92. PubMed ID: 20661521 [Abstract] [Full Text] [Related]
11. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. Hambourger M, Gervaldo M, Svedruzic D, King PW, Gust D, Ghirardi M, Moore AL, Moore TA. J Am Chem Soc; 2008 Feb 13; 130(6):2015-22. PubMed ID: 18205358 [Abstract] [Full Text] [Related]
12. Electroreduction of oxygen by cytochrome C oxidase immobilized in electrode-supported lipid bilayer membranes. Su L, Hawkridge FM, Rhoten MC. Chem Biodivers; 2004 Sep 13; 1(9):1281-8. PubMed ID: 17191905 [Abstract] [Full Text] [Related]
13. Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Wang YF, Tsujimura S, Cheng SS, Kano K. Appl Microbiol Biotechnol; 2007 Oct 13; 76(6):1439-46. PubMed ID: 17665190 [Abstract] [Full Text] [Related]
14. Direct electron transfer reactions between human ceruloplasmin and electrodes. Haberska K, Vaz-Domínguez C, De Lacey AL, Dagys M, Reimann CT, Shleev S. Bioelectrochemistry; 2009 Sep 13; 76(1-2):34-41. PubMed ID: 19535300 [Abstract] [Full Text] [Related]
15. Tryptophan repressor-binding proteins from Escherichia coli and Archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells. Zafar MN, Tasca F, Gorton L, Patridge EV, Ferry JG, Nöll G. Anal Chem; 2009 May 15; 81(10):4082-8. PubMed ID: 19438267 [Abstract] [Full Text] [Related]
16. Combination of laccase and catalase in construction of H2O2-O2 based biocathode for applications in glucose biofuel cells. Ammam M, Fransaer J. Biosens Bioelectron; 2013 Jan 15; 39(1):274-81. PubMed ID: 22906713 [Abstract] [Full Text] [Related]
17. High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates. Ramasamy RP, Luckarift HR, Ivnitski DM, Atanassov PB, Johnson GR. Chem Commun (Camb); 2010 Sep 07; 46(33):6045-7. PubMed ID: 20571702 [Abstract] [Full Text] [Related]
18. Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: direct electron transfer and multielectrocatalysis. Shan D, Wang YN, Xue HG, Cosnier S, Ding SN. Biosens Bioelectron; 2009 Aug 15; 24(12):3556-61. PubMed ID: 19500969 [Abstract] [Full Text] [Related]
19. Investigation of biosensor signal bioamplification: comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode. ElKaoutit M, Naranjo-Rodriguez I, Temsamani KR, Domínguez M, Hidalgo-Hidalgo de Cisneros JL. Talanta; 2008 Jun 15; 75(5):1348-55. PubMed ID: 18585223 [Abstract] [Full Text] [Related]
20. Bioelectrocatalytic O(2) reduction with a laccase-bearing poly(3-methylthiophene) film based on direct electron transfer from the polymer to laccase. Kuwahara T, Asano T, Kondo M, Shimomura M. Bioelectrochemistry; 2013 Jun 15; 91():28-31. PubMed ID: 23353116 [Abstract] [Full Text] [Related] Page: [Next] [New Search]