These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
321 related items for PubMed ID: 19348432
1. Spectroscopic and kinetic evidence on how bacteriorhodopsin accomplishes vectorial proton transport under functional conditions. Lórenz-Fonfría VA, Kandori H. J Am Chem Soc; 2009 Apr 29; 131(16):5891-901. PubMed ID: 19348432 [Abstract] [Full Text] [Related]
2. Calculation of proton transfers in Bacteriorhodopsin bR and M intermediates. Song Y, Mao J, Gunner MR. Biochemistry; 2003 Aug 26; 42(33):9875-88. PubMed ID: 12924936 [Abstract] [Full Text] [Related]
3. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Subramaniam S, Henderson R. Nature; 2000 Aug 10; 406(6796):653-7. PubMed ID: 10949309 [Abstract] [Full Text] [Related]
4. The last phase of the reprotonation switch in bacteriorhodopsin: the transition between the M-type and the N-type protein conformation depends on hydration. Kamikubo H, Oka T, Imamoto Y, Tokunaga F, Lanyi JK, Kataoka M. Biochemistry; 1997 Oct 07; 36(40):12282-7. PubMed ID: 9315867 [Abstract] [Full Text] [Related]
5. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes. Tittor J, Paula S, Subramaniam S, Heberle J, Henderson R, Oesterhelt D. J Mol Biol; 2002 May 31; 319(2):555-65. PubMed ID: 12051928 [Abstract] [Full Text] [Related]
6. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Dioumaev AK, Richter HT, Brown LS, Tanio M, Tuzi S, Saito H, Kimura Y, Needleman R, Lanyi JK. Biochemistry; 1998 Feb 24; 37(8):2496-506. PubMed ID: 9485398 [Abstract] [Full Text] [Related]
7. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model. Tanimoto T, Furutani Y, Kandori H. Biochemistry; 2003 Mar 04; 42(8):2300-6. PubMed ID: 12600197 [Abstract] [Full Text] [Related]
8. Local-access model for proton transfer in bacteriorhodopsin. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biochemistry; 1998 Mar 17; 37(11):3982-93. PubMed ID: 9521720 [Abstract] [Full Text] [Related]
9. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE, Vakkasoglu AS, Lugtenburg J, Gennis RB, Maeda A. Biochemistry; 2008 Nov 04; 47(44):11598-605. PubMed ID: 18837559 [Abstract] [Full Text] [Related]
10. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements. Bondar AN, Suhai S, Fischer S, Smith JC, Elstner M. J Struct Biol; 2007 Mar 04; 157(3):454-69. PubMed ID: 17189704 [Abstract] [Full Text] [Related]
11. D38 is an essential part of the proton translocation pathway in bacteriorhodopsin. Riesle J, Oesterhelt D, Dencher NA, Heberle J. Biochemistry; 1996 May 28; 35(21):6635-43. PubMed ID: 8639612 [Abstract] [Full Text] [Related]
12. Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin. Maeda A, Herzfeld J, Belenky M, Needleman R, Gennis RB, Balashov SP, Ebrey TG. Biochemistry; 2003 Dec 09; 42(48):14122-9. PubMed ID: 14640679 [Abstract] [Full Text] [Related]
13. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Hu JG, Sun BQ, Bizounok M, Hatcher ME, Lansing JC, Raap J, Verdegem PJ, Lugtenburg J, Griffin RG, Herzfeld J. Biochemistry; 1998 Jun 02; 37(22):8088-96. PubMed ID: 9609703 [Abstract] [Full Text] [Related]
14. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Maeda A, Gennis RB, Balashov SP, Ebrey TG. Biochemistry; 2005 Apr 26; 44(16):5960-8. PubMed ID: 15835885 [Abstract] [Full Text] [Related]
15. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine. Xiao Y, Hutson MS, Belenky M, Herzfeld J, Braiman MS. Biochemistry; 2004 Oct 12; 43(40):12809-18. PubMed ID: 15461453 [Abstract] [Full Text] [Related]
16. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue. Zadok U, Asato AE, Sheves M. Biochemistry; 2005 Jun 14; 44(23):8479-85. PubMed ID: 15938637 [Abstract] [Full Text] [Related]
17. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y, Bezerra AG, Waschuk S, Sumii M, Brown LS, Kandori H. Biochemistry; 2004 Aug 03; 43(30):9636-46. PubMed ID: 15274618 [Abstract] [Full Text] [Related]
18. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network. Rammelsberg R, Huhn G, Lübben M, Gerwert K. Biochemistry; 1998 Apr 07; 37(14):5001-9. PubMed ID: 9538019 [Abstract] [Full Text] [Related]
19. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M, Yoshitsugu M, Mizuide N, Ihara K, Kandori H. Biochemistry; 2007 Jun 26; 46(25):7525-35. PubMed ID: 17547422 [Abstract] [Full Text] [Related]
20. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M, Kandori H. Biochemistry; 2005 May 24; 44(20):7406-13. PubMed ID: 15895984 [Abstract] [Full Text] [Related] Page: [Next] [New Search]