These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
373 related items for PubMed ID: 19348801
1. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus. Wagshul ME, McAllister JP, Rashid S, Li J, Egnor MR, Walker ML, Yu M, Smith SD, Zhang G, Chen JJ, Benveniste H. Exp Neurol; 2009 Jul; 218(1):33-40. PubMed ID: 19348801 [Abstract] [Full Text] [Related]
2. Relationship between ventricular morphology and aqueductal cerebrospinal fluid flow in healthy and communicating hydrocephalus. Chiang WW, Takoudis CG, Lee SH, Weis-McNulty A, Glick R, Alperin N. Invest Radiol; 2009 Apr; 44(4):192-9. PubMed ID: 19300098 [Abstract] [Full Text] [Related]
3. New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Klarica M, Oresković D, Bozić B, Vukić M, Butković V, Bulat M. Neuroscience; 2009 Feb 18; 158(4):1397-405. PubMed ID: 19111908 [Abstract] [Full Text] [Related]
4. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. Wagshul ME, Chen JJ, Egnor MR, McCormack EJ, Roche PE. J Neurosurg; 2006 May 18; 104(5):810-9. PubMed ID: 16703889 [Abstract] [Full Text] [Related]
5. Shunt surgery effects on cerebrospinal fluid flow across the aqueduct of Sylvius in patients with communicating hydrocephalus. Abbey P, Singh P, Khandelwal N, Mukherjee KK. J Clin Neurosci; 2009 Apr 18; 16(4):514-8. PubMed ID: 19195891 [Abstract] [Full Text] [Related]
6. Progression of experimental infantile hydrocephalus and effects of ventriculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology. McAllister JP, Cohen MI, O'Mara KA, Johnson MH. Neurosurgery; 1991 Sep 18; 29(3):329-40. PubMed ID: 1922699 [Abstract] [Full Text] [Related]
7. Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Lopes Lda S, Slobodian I, Del Bigio MR. Exp Neurol; 2009 Sep 18; 219(1):187-96. PubMed ID: 19460371 [Abstract] [Full Text] [Related]
8. Alterations of pulsation absorber characteristics in experimental hydrocephalus. Park EH, Dombrowski S, Luciano M, Zurakowski D, Madsen JR. J Neurosurg Pediatr; 2010 Aug 18; 6(2):159-70. PubMed ID: 20672938 [Abstract] [Full Text] [Related]
9. Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space. Li J, McAllister JP, Shen Y, Wagshul ME, Miller JM, Egnor MR, Johnston MG, Haacke EM, Walker ML. Exp Neurol; 2008 Jun 18; 211(2):351-61. PubMed ID: 18433747 [Abstract] [Full Text] [Related]
10. The dynamics of brain and cerebrospinal fluid growth in normal versus hydrocephalic mice. Mandell JG, Neuberger T, Drapaca CS, Webb AG, Schiff SJ. J Neurosurg Pediatr; 2010 Jul 18; 6(1):1-10. PubMed ID: 20593980 [Abstract] [Full Text] [Related]
11. Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations. Del Bigio MR, Crook CR, Buist R. Exp Neurol; 1997 Nov 18; 148(1):256-64. PubMed ID: 9398467 [Abstract] [Full Text] [Related]
12. Decorin prevents the development of juvenile communicating hydrocephalus. Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister JP, Logan A. Brain; 2013 Sep 18; 136(Pt 9):2842-58. PubMed ID: 23983032 [Abstract] [Full Text] [Related]
13. Aqueductal Cerebrospinal Fluid Stroke Volume Flow in a Rodent Model of Chronic Communicating Hydrocephalus: Establishing a Homogeneous Study Population for Cerebrospinal Fluid Dynamics Exploration. Vivas-Buitrago T, Lokossou A, Jusué-Torres I, Pinilla-Monsalve G, Blitz AM, Herzka DA, Robison J, Xu J, Guerrero-Cazares H, Mori S, Quiñones-Hinojosa A, Baledént O, Rigamonti D. World Neurosurg; 2019 Aug 18; 128():e1118-e1125. PubMed ID: 31121363 [Abstract] [Full Text] [Related]
14. MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Greitz D, Hannerz J, Rähn T, Bolander H, Ericsson A. Acta Radiol; 1994 May 18; 35(3):204-11. PubMed ID: 8192953 [Abstract] [Full Text] [Related]
15. Cerebrospinal fluid pathways from cisterns to ventricles in N-butyl cyanoacrylate-induced hydrocephalic rats. Park JH, Park YS, Suk JS, Park SW, Hwang SN, Nam TK, Kim YB, Lee WB. J Neurosurg Pediatr; 2011 Dec 18; 8(6):640-6. PubMed ID: 22132924 [Abstract] [Full Text] [Related]
16. Diffusion-weighted magnetic resonance imaging of cerebrospinal fluid in patients with and without communicating hydrocephalus. Nasel C, Gentzsch S, Heimberger K. Acta Radiol; 2007 Sep 18; 48(7):768-73. PubMed ID: 17729009 [Abstract] [Full Text] [Related]
17. Can pulsatile CSF flow across the cerebral aqueduct cause ventriculomegaly? A prospective study of patients with communicating hydrocephalus. Holmlund P, Qvarlander S, Malm J, Eklund A. Fluids Barriers CNS; 2019 Dec 23; 16(1):40. PubMed ID: 31865917 [Abstract] [Full Text] [Related]
18. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. Linninger AA, Xenos M, Zhu DC, Somayaji MR, Kondapalli S, Penn RD. IEEE Trans Biomed Eng; 2007 Feb 23; 54(2):291-302. PubMed ID: 17278586 [Abstract] [Full Text] [Related]
19. The behavioral change of locomotor activity in a kaolin-induced hydrocephalus rat model: evaluation of the effect on the dopaminergic system with progressive ventricle dilatation. Hwang YS, Shim I, Chang JW. Neurosci Lett; 2009 Oct 25; 462(3):198-202. PubMed ID: 19616066 [Abstract] [Full Text] [Related]
20. Gray matter metabolism in acute and chronic hydrocephalus. Kondziella D, Eyjolfsson EM, Saether O, Sonnewald U, Risa O. Neuroscience; 2009 Mar 17; 159(2):570-7. PubMed ID: 19171182 [Abstract] [Full Text] [Related] Page: [Next] [New Search]