These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 19350920

  • 1. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.
    Clack HL.
    Environ Sci Technol; 2009 Mar 01; 43(5):1460-6. PubMed ID: 19350920
    [Abstract] [Full Text] [Related]

  • 2. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.
    Scala F, Clack HL.
    J Hazard Mater; 2008 Apr 01; 152(2):616-23. PubMed ID: 17703878
    [Abstract] [Full Text] [Related]

  • 3. Particle size distribution effects on gas-particle mass transfer within electrostatic precipitators.
    Clack HL.
    Environ Sci Technol; 2006 Jun 15; 40(12):3929-33. PubMed ID: 16830563
    [Abstract] [Full Text] [Related]

  • 4. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.
    Clack HL.
    Environ Sci Technol; 2012 Jul 03; 46(13):7327-33. PubMed ID: 22663136
    [Abstract] [Full Text] [Related]

  • 5. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H, Xu Z, Fan M, Bland AE, Judkins RR.
    J Hazard Mater; 2007 Jul 19; 146(1-2):1-11. PubMed ID: 17544578
    [Abstract] [Full Text] [Related]

  • 6. Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates.
    Clack HL.
    Environ Sci Technol; 2006 Jun 01; 40(11):3617-22. PubMed ID: 16786702
    [Abstract] [Full Text] [Related]

  • 7. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.
    Clack HL.
    J Air Waste Manag Assoc; 2017 Aug 01; 67(8):881-888. PubMed ID: 28287914
    [Abstract] [Full Text] [Related]

  • 8. Mass transfer within electrostatic precipitators: trace gas adsorption by sorbent-covered plate electrodes.
    Clack HL.
    J Air Waste Manag Assoc; 2006 Jun 01; 56(6):759-66. PubMed ID: 16805400
    [Abstract] [Full Text] [Related]

  • 9. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.
    Tian H, Wang Y, Cheng K, Qu Y, Hao J, Xue Z, Chai F.
    J Air Waste Manag Assoc; 2012 May 01; 62(5):576-86. PubMed ID: 22696807
    [Abstract] [Full Text] [Related]

  • 10. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.
    Chen B, Liu G, Sun R.
    Arch Environ Contam Toxicol; 2016 May 01; 70(4):724-33. PubMed ID: 26883032
    [Abstract] [Full Text] [Related]

  • 11. Preliminary estimates of performance and cost of mercury control technology applications on electric utility boilers.
    Srivastava RK, Sedman CB, Kilgroe JD, Smith D, Renninger S.
    J Air Waste Manag Assoc; 2001 Oct 01; 51(10):1460-70. PubMed ID: 11686251
    [Abstract] [Full Text] [Related]

  • 12. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.
    Hu Y, Cheng H.
    Environ Pollut; 2016 Nov 01; 218():1209-1221. PubMed ID: 27596303
    [Abstract] [Full Text] [Related]

  • 13. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S, Duan Y, Chen L, Li Y, Yao T, Liu S, Liu M, Lu J.
    Environ Pollut; 2017 Oct 01; 229():863-870. PubMed ID: 28779897
    [Abstract] [Full Text] [Related]

  • 14. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.
    Lin G, Penner JE, Clack HL.
    Environ Sci Technol; 2014 Sep 02; 48(17):10519-23. PubMed ID: 25093939
    [Abstract] [Full Text] [Related]

  • 15. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F.
    J Environ Monit; 2004 Oct 02; 6(10):792-8. PubMed ID: 15480492
    [Abstract] [Full Text] [Related]

  • 16. Full-scale evaluation of mercury control with sorbent injection and COHPAC at Alabama Power E.C. Gaston.
    Bustard CJ, Durham M, Lindsey C, Starns T, Baldrey K, Martin C, Schlager R, Sjostrom S, Slye R, Renninger S, Monroe L, Miller R, Chang R.
    J Air Waste Manag Assoc; 2002 Aug 02; 52(8):918-26. PubMed ID: 12184690
    [Abstract] [Full Text] [Related]

  • 17. A Highly Resolved Mercury Emission Inventory of Chinese Coal-Fired Power Plants.
    Liu K, Wang S, Wu Q, Wang L, Ma Q, Zhang L, Li G, Tian H, Duan L, Hao J.
    Environ Sci Technol; 2018 Feb 20; 52(4):2400-2408. PubMed ID: 29320854
    [Abstract] [Full Text] [Related]

  • 18. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S, Feng X, Qiu J, Yin G, Yang Z.
    Environ Res; 2007 Oct 20; 105(2):175-82. PubMed ID: 17517388
    [Abstract] [Full Text] [Related]

  • 19. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.
    Jing H, Wang X, Wang WN, Biswas P.
    J Air Waste Manag Assoc; 2015 Apr 20; 65(4):455-65. PubMed ID: 25947215
    [Abstract] [Full Text] [Related]

  • 20. The application of regenerable sorbents for mercury capture in gas phase.
    Lopez-Anton MA, Fernández-Miranda N, Martínez-Tarazona MR.
    Environ Sci Pollut Res Int; 2016 Dec 20; 23(24):24495-24503. PubMed ID: 27604126
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.