These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


494 related items for PubMed ID: 19362904

  • 1. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A, Colin P, Bensadoun JC, Bertsch A, Renaud P.
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [Abstract] [Full Text] [Related]

  • 2. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP, Rajdev P, Ellison C, Irazoqui PP.
    Brain Res; 2009 Jul 28; 1282():183-200. PubMed ID: 19486899
    [Abstract] [Full Text] [Related]

  • 3. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes.
    McConnell GC, Butera RJ, Bellamkonda RV.
    J Neural Eng; 2009 Oct 28; 6(5):055005. PubMed ID: 19721187
    [Abstract] [Full Text] [Related]

  • 4. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR, Tresco PA.
    IEEE Trans Biomed Eng; 2005 Nov 28; 52(11):1960-5. PubMed ID: 16285400
    [Abstract] [Full Text] [Related]

  • 5. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances.
    Johnson MD, Otto KJ, Kipke DR.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun 28; 13(2):160-5. PubMed ID: 16003894
    [Abstract] [Full Text] [Related]

  • 6. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A, Sanchez JC.
    J Neural Eng; 2012 Apr 28; 9(2):026028. PubMed ID: 22442134
    [Abstract] [Full Text] [Related]

  • 7. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY, Liao LD, Lin CT, Hsu JH, He X, Chen YY, Chang JY, Chen HF, Tsang S, Shih YY.
    J Neural Eng; 2012 Jun 28; 9(3):036001. PubMed ID: 22488106
    [Abstract] [Full Text] [Related]

  • 8. In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers.
    Lin HL, Lin CC, Ju MS, Liao JD.
    Biomed Microdevices; 2011 Feb 28; 13(1):243-53. PubMed ID: 20972888
    [Abstract] [Full Text] [Related]

  • 9. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC, Schneider TM, Owens DJ, Bellamkonda RV.
    IEEE Trans Biomed Eng; 2007 Jun 28; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [Abstract] [Full Text] [Related]

  • 10. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR.
    IEEE Trans Biomed Eng; 2004 Jun 28; 51(6):896-904. PubMed ID: 15188856
    [Abstract] [Full Text] [Related]

  • 11. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ.
    Invest Ophthalmol Vis Sci; 2009 Dec 28; 50(12):5859-66. PubMed ID: 19553608
    [Abstract] [Full Text] [Related]

  • 12. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo.
    Duan YY, Clark GM, Cowan RS.
    Biomaterials; 2004 Aug 28; 25(17):3813-28. PubMed ID: 15020157
    [Abstract] [Full Text] [Related]

  • 13. Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses.
    Mercanzini A, Reddy ST, Velluto D, Colin P, Maillard A, Bensadoun JC, Hubbell JA, Renaud P.
    J Control Release; 2010 Aug 03; 145(3):196-202. PubMed ID: 20447428
    [Abstract] [Full Text] [Related]

  • 14. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants.
    Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR.
    J Neural Eng; 2007 Dec 03; 4(4):410-23. PubMed ID: 18057508
    [Abstract] [Full Text] [Related]

  • 15. Visualization of the intact interface between neural tissue and implanted microelectrode arrays.
    Holecko MM, Williams JC, Massia SP.
    J Neural Eng; 2005 Dec 03; 2(4):97-102. PubMed ID: 16317233
    [Abstract] [Full Text] [Related]

  • 16. Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays.
    Molina-Luna K, Buitrago MM, Hertler B, Schubring M, Haiss F, Nisch W, Schulz JB, Luft AR.
    J Neurosci Methods; 2007 Mar 30; 161(1):118-25. PubMed ID: 17178423
    [Abstract] [Full Text] [Related]

  • 17. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex.
    Wang C, Brunton E, Haghgooie S, Cassells K, Lowery A, Rajan R.
    J Neural Eng; 2013 Aug 30; 10(4):046010. PubMed ID: 23819958
    [Abstract] [Full Text] [Related]

  • 18. Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays.
    Skousen JL, Merriam SM, Srivannavit O, Perlin G, Wise KD, Tresco PA.
    Prog Brain Res; 2011 Aug 30; 194():167-80. PubMed ID: 21867802
    [Abstract] [Full Text] [Related]

  • 19. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT.
    IEEE Trans Biomed Eng; 2004 Jun 30; 51(6):881-9. PubMed ID: 15188854
    [Abstract] [Full Text] [Related]

  • 20. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S, Myllymaa K, Korhonen H, Töyräs J, Jääskeläinen JE, Djupsund K, Tanila H, Lappalainen R.
    Biosens Bioelectron; 2009 Jun 15; 24(10):3067-72. PubMed ID: 19380223
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.