These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1249 related items for PubMed ID: 19364681
1. Tailored laminin-332 alpha3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion. Damodaran G, Collighan R, Griffin M, Navsaria H, Pandit A. Acta Biomater; 2009 Sep; 5(7):2441-50. PubMed ID: 19364681 [Abstract] [Full Text] [Related]
2. Tethering a laminin peptide to a crosslinked collagen scaffold for biofunctionality. Damodaran G, Collighan R, Griffin M, Pandit A. J Biomed Mater Res A; 2009 Jun 15; 89(4):1001-10. PubMed ID: 18478551 [Abstract] [Full Text] [Related]
3. In vivo effects of tailored laminin-332 α3 conjugated scaffolds enhances wound healing: a histomorphometric analysis. Damodaran G, Tiong WH, Collighan R, Griffin M, Navsaria H, Pandit A. J Biomed Mater Res A; 2013 Oct 15; 101(10):2788-95. PubMed ID: 23463686 [Abstract] [Full Text] [Related]
4. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Lin YC, Tan FJ, Marra KG, Jan SS, Liu DC. Acta Biomater; 2009 Sep 15; 5(7):2591-600. PubMed ID: 19427824 [Abstract] [Full Text] [Related]
5. The effect of pore size on cell adhesion in collagen-GAG scaffolds. O'Brien FJ, Harley BA, Yannas IV, Gibson LJ. Biomaterials; 2005 Feb 15; 26(4):433-41. PubMed ID: 15275817 [Abstract] [Full Text] [Related]
6. The effect of laminin peptide gradient in enzymatically cross-linked collagen scaffolds on neurite growth. Yao L, Damodaran G, Nikolskaya N, Gorman AM, Windebank A, Pandit A. J Biomed Mater Res A; 2010 Feb 15; 92(2):484-92. PubMed ID: 19213056 [Abstract] [Full Text] [Related]
7. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds. Buijtenhuijs P, Buttafoco L, Poot AA, Daamen WF, van Kuppevelt TH, Dijkstra PJ, de Vos RA, Sterk LM, Geelkerken BR, Feijen J, Vermes I. Biotechnol Appl Biochem; 2004 Apr 15; 39(Pt 2):141-9. PubMed ID: 15032734 [Abstract] [Full Text] [Related]
8. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM, Bryant SJ. Acta Biomater; 2009 Oct 15; 5(8):2929-38. PubMed ID: 19457460 [Abstract] [Full Text] [Related]
10. Biological evaluation of collagen-chitosan scaffolds for dermis tissue engineering. Sun LP, Wang S, Zhang ZW, Wang XY, Zhang QQ. Biomed Mater; 2009 Oct 15; 4(5):055008. PubMed ID: 19779250 [Abstract] [Full Text] [Related]
11. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, Ramakrishna S. Acta Biomater; 2009 Sep 15; 5(7):2560-9. PubMed ID: 19269270 [Abstract] [Full Text] [Related]
12. Cross-linked collagen-chondroitin sulfate-hyaluronic acid imitating extracellular matrix as scaffold for dermal tissue engineering. Wang W, Zhang M, Lu W, Zhang X, Ma D, Rong X, Yu C, Jin Y. Tissue Eng Part C Methods; 2010 Apr 15; 16(2):269-79. PubMed ID: 19530938 [Abstract] [Full Text] [Related]
13. The mechanically enhanced phase separation of sprayed polyurethane scaffolds and their effect on the alignment of fibroblasts. Kennedy JP, McCandless SP, Lasher RA, Hitchcock RW. Biomaterials; 2010 Feb 15; 31(6):1126-32. PubMed ID: 19878993 [Abstract] [Full Text] [Related]
14. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. O'Brien FJ, Harley BA, Waller MA, Yannas IV, Gibson LJ, Prendergast PJ. Technol Health Care; 2007 Feb 15; 15(1):3-17. PubMed ID: 17264409 [Abstract] [Full Text] [Related]
15. Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices. Wachiralarpphaithoon C, Iwasaki Y, Akiyoshi K. Biomaterials; 2007 Feb 15; 28(6):984-93. PubMed ID: 17107708 [Abstract] [Full Text] [Related]
16. Characterization of a microbial transglutaminase cross-linked type II collagen scaffold. O Halloran DM, Collighan RJ, Griffin M, Pandit AS. Tissue Eng; 2006 Jun 15; 12(6):1467-74. PubMed ID: 16846344 [Abstract] [Full Text] [Related]
17. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Santiago LY, Nowak RW, Peter Rubin J, Marra KG. Biomaterials; 2006 May 15; 27(15):2962-9. PubMed ID: 16445976 [Abstract] [Full Text] [Related]
18. A biomimetic porous hydrogel of gelatin and glycosaminoglycans cross-linked with transglutaminase and its application in the culture of hepatocytes. De Colli M, Massimi M, Barbetta A, Di Rosario BL, Nardecchia S, Conti Devirgiliis L, Dentini M. Biomed Mater; 2012 Oct 15; 7(5):055005. PubMed ID: 22832766 [Abstract] [Full Text] [Related]
19. Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. Reyes CD, García AJ. J Biomed Mater Res A; 2003 Jun 15; 65(4):511-23. PubMed ID: 12761842 [Abstract] [Full Text] [Related]
20. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Hidalgo-Bastida LA, Barry JJ, Everitt NM, Rose FR, Buttery LD, Hall IP, Claycomb WC, Shakesheff KM. Acta Biomater; 2007 Jul 15; 3(4):457-62. PubMed ID: 17321810 [Abstract] [Full Text] [Related] Page: [Next] [New Search]