These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
227 related items for PubMed ID: 19365732
1. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates. Wang GJ, Lin YC, Li CW, Hsueh CC, Hsu SH, Hung HS. Biomed Microdevices; 2009 Aug; 11(4):843-50. PubMed ID: 19365732 [Abstract] [Full Text] [Related]
3. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S, Lee GY, Wong JY, Desai TA. Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [Abstract] [Full Text] [Related]
4. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X. Acta Biomater; 2009 Sep; 5(7):2680-92. PubMed ID: 19376759 [Abstract] [Full Text] [Related]
5. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Hwang CM, Khademhosseini A, Park Y, Sun K, Lee SH. Langmuir; 2008 Jun 01; 24(13):6845-51. PubMed ID: 18512874 [Abstract] [Full Text] [Related]
6. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X, Wang Y, Ren L, Zhao N, Gong Y, Wang DA. Acta Biomater; 2009 Jun 01; 5(5):1697-707. PubMed ID: 19217361 [Abstract] [Full Text] [Related]
10. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. Miller DC, Haberstroh KM, Webster TJ. J Biomed Mater Res A; 2007 Jun 01; 81(3):678-84. PubMed ID: 17187386 [Abstract] [Full Text] [Related]
11. Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces. Miller DC, Thapa A, Haberstroh KM, Webster TJ. IEEE Trans Nanobioscience; 2002 Jun 01; 1(2):61-6. PubMed ID: 16689208 [Abstract] [Full Text] [Related]
12. Barrier layer non-uniformity effects in anodized aluminum oxide nanopores on ITO substrates. Liu P, Singh VP, Rajaputra S. Nanotechnology; 2010 Mar 19; 21(11):115303. PubMed ID: 20173243 [Abstract] [Full Text] [Related]
15. Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable. Lee W, Park BG, Kim DH, Ahn DJ, Park Y, Lee SH, Lee KB. Langmuir; 2010 Feb 02; 26(3):1412-5. PubMed ID: 20039661 [Abstract] [Full Text] [Related]
18. In vitro 3D assay to test angiogenic effects of human CD14+ monocytes seeded on macroporous PLGA/CaP polymers with a CaP nanostructured surface. Hiebl B, Fuhrmann R, Costa ME, Almeida MM, Franke RP. Clin Hemorheol Microcirc; 2008 Feb 02; 40(1):37-50. PubMed ID: 18791266 [Abstract] [Full Text] [Related]
20. A protein/antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications. Shi X, Wang Y, Ren L, Huang W, Wang DA. Int J Pharm; 2009 May 21; 373(1-2):85-92. PubMed ID: 19429292 [Abstract] [Full Text] [Related] Page: [Next] [New Search]