These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


314 related items for PubMed ID: 19367836

  • 1. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.
    Martin W, Zhu W, Krilov G.
    J Phys Chem B; 2008 Dec 18; 112(50):16076-89. PubMed ID: 19367836
    [Abstract] [Full Text] [Related]

  • 2. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube.
    Roxbury D, Jagota A, Mittal J.
    J Am Chem Soc; 2011 Aug 31; 133(34):13545-50. PubMed ID: 21797248
    [Abstract] [Full Text] [Related]

  • 3. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL, Zhao GJ.
    Nanoscale; 2012 Apr 07; 4(7):2301-5. PubMed ID: 22392473
    [Abstract] [Full Text] [Related]

  • 4. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids.
    Lustig SR, Jagota A, Khripin C, Zheng M.
    J Phys Chem B; 2005 Feb 24; 109(7):2559-66. PubMed ID: 16851257
    [Abstract] [Full Text] [Related]

  • 5. The binding of single-stranded DNA and PNA to single-walled carbon nanotubes probed by flow linear dichroism.
    Rajendra J, Rodger A.
    Chemistry; 2005 Aug 05; 11(16):4841-7. PubMed ID: 15954149
    [Abstract] [Full Text] [Related]

  • 6. Structural characteristics of oligomeric DNA strands adsorbed onto single-walled carbon nanotubes.
    Roxbury D, Jagota A, Mittal J.
    J Phys Chem B; 2013 Jan 10; 117(1):132-40. PubMed ID: 23199189
    [Abstract] [Full Text] [Related]

  • 7. DNA-assisted dispersion and separation of carbon nanotubes.
    Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG.
    Nat Mater; 2003 May 10; 2(5):338-42. PubMed ID: 12692536
    [Abstract] [Full Text] [Related]

  • 8. SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling.
    Karachevtsev MV, Lytvyn OS, Stepanian SG, Leontiev VS, Adamowicz L, Karachevtsev VA.
    J Nanosci Nanotechnol; 2008 Mar 10; 8(3):1473-80. PubMed ID: 18468177
    [Abstract] [Full Text] [Related]

  • 9. Simulation of adsorption of DNA on carbon nanotubes.
    Zhao X, Johnson JK.
    J Am Chem Soc; 2007 Aug 29; 129(34):10438-45. PubMed ID: 17676840
    [Abstract] [Full Text] [Related]

  • 10. Dissociation of single-strand DNA: single-walled carbon nanotube hybrids by Watson-Crick base-pairing.
    Jung S, Cha M, Park J, Jeong N, Kim G, Park C, Ihm J, Lee J.
    J Am Chem Soc; 2010 Aug 18; 132(32):10964-6. PubMed ID: 20666356
    [Abstract] [Full Text] [Related]

  • 11. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S, Mittal J, Vezenov D, Jagota A.
    J Am Chem Soc; 2014 Sep 17; 136(37):12947-57. PubMed ID: 25162693
    [Abstract] [Full Text] [Related]

  • 12. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S, Periyasamy G, Samanta PK, Pati SK.
    J Phys Chem B; 2012 Dec 27; 116(51):14754-9. PubMed ID: 23199121
    [Abstract] [Full Text] [Related]

  • 13. Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids.
    Yamamoto Y, Fujigaya T, Niidome Y, Nakashima N.
    Nanoscale; 2010 Sep 27; 2(9):1767-72. PubMed ID: 20820708
    [Abstract] [Full Text] [Related]

  • 14. Water transport inside a single-walled carbon nanotube driven by a temperature gradient.
    Shiomi J, Maruyama S.
    Nanotechnology; 2009 Feb 04; 20(5):055708. PubMed ID: 19417367
    [Abstract] [Full Text] [Related]

  • 15. Adsorption of poly(rA) on the carbon nanotube surface and its hybridization with poly(rU).
    Karachevtsev VA, Gladchenko GO, Karachevtsev MV, Valeev VA, Leontiev VS, Lytvyn OS.
    Chemphyschem; 2008 Oct 06; 9(14):2010-8. PubMed ID: 18780410
    [Abstract] [Full Text] [Related]

  • 16. Force fluctuation on pulling a ssDNA from a carbon nanotube.
    Li Z, Yang W.
    Biomech Model Mechanobiol; 2011 Apr 06; 10(2):221-7. PubMed ID: 20526730
    [Abstract] [Full Text] [Related]

  • 17. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.
    Dong L.
    Nanotechnology; 2009 Nov 18; 20(46):465602. PubMed ID: 19843998
    [Abstract] [Full Text] [Related]

  • 18. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.
    Nina M, Fonné-Pfister R, Beaudegnies R, Chekatt H, Jung PM, Murphy-Kessabi F, De Mesmaeker A, Wendeborn S.
    J Am Chem Soc; 2005 Apr 27; 127(16):6027-38. PubMed ID: 15839703
    [Abstract] [Full Text] [Related]

  • 19. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions.
    Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W.
    Anal Chem; 2008 Oct 01; 80(19):7408-13. PubMed ID: 18771233
    [Abstract] [Full Text] [Related]

  • 20. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K.
    J Am Chem Soc; 2005 Mar 30; 127(12):4388-96. PubMed ID: 15783221
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.