These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


947 related items for PubMed ID: 19369063

  • 1. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG, Carmona JA, Alfonso JE, Alcaide LJ.
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [Abstract] [Full Text] [Related]

  • 2. Simulation of the thermogravimetry analysis of three non-wood pulps.
    Barneto AG, Carmona JA, Alfonso JE, Serrano RS.
    Bioresour Technol; 2010 May; 101(9):3220-9. PubMed ID: 20071163
    [Abstract] [Full Text] [Related]

  • 3. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK, Gu S, Jin B, Fang MX.
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [Abstract] [Full Text] [Related]

  • 4. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M, Trouvé G.
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [Abstract] [Full Text] [Related]

  • 5. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T, Tippayawong N.
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [Abstract] [Full Text] [Related]

  • 6. Effect of the previous composting on volatiles production during biomass pyrolysis.
    Barneto AG, Ariza Carmona J, Díaz Blanco MJ.
    J Phys Chem A; 2010 Mar 25; 114(11):3756-63. PubMed ID: 19642694
    [Abstract] [Full Text] [Related]

  • 7. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL.
    Bioresour Technol; 2012 Apr 25; 109():163-72. PubMed ID: 22297048
    [Abstract] [Full Text] [Related]

  • 8. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass.
    López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L.
    Bioresour Technol; 2013 Sep 25; 143():562-74. PubMed ID: 23835261
    [Abstract] [Full Text] [Related]

  • 9. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.
    Maiti S, Dey S, Purakayastha S, Ghosh B.
    Bioresour Technol; 2006 Nov 25; 97(16):2065-70. PubMed ID: 16298126
    [Abstract] [Full Text] [Related]

  • 10. Thermal behaviour and kinetics of coal/biomass blends during co-combustion.
    Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F.
    Bioresour Technol; 2010 Jul 25; 101(14):5601-8. PubMed ID: 20189802
    [Abstract] [Full Text] [Related]

  • 11. Pyrolysis of biomass by thermal analysis-mass spectrometry (TA-MS).
    Huang YF, Kuan WH, Chiueh PT, Lo SL.
    Bioresour Technol; 2011 Feb 25; 102(3):3527-34. PubMed ID: 21131197
    [Abstract] [Full Text] [Related]

  • 12. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres.
    Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM.
    Bioresour Technol; 2009 Feb 25; 100(3):1413-8. PubMed ID: 18829303
    [Abstract] [Full Text] [Related]

  • 13. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P, Ledakowicz S.
    Water Sci Technol; 2001 Feb 25; 44(10):333-9. PubMed ID: 11794675
    [Abstract] [Full Text] [Related]

  • 14. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.
    Chandrasekaran SR, Hopke PK.
    Bioresour Technol; 2012 Dec 25; 125():52-8. PubMed ID: 23026316
    [Abstract] [Full Text] [Related]

  • 15. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis.
    Cai J, Wu W, Liu R.
    Bioresour Technol; 2013 Mar 25; 132():423-6. PubMed ID: 23280091
    [Abstract] [Full Text] [Related]

  • 16. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J, Chen T, Wu J, Wu J.
    Bioresour Technol; 2014 Aug 25; 166():87-95. PubMed ID: 24907567
    [Abstract] [Full Text] [Related]

  • 17. Characterization of carbons derived from cellulose and lignin and their oxidative behavior.
    Xie X, Goodell B, Zhang D, Nagle DC, Qian Y, Peterson ML, Jellison J.
    Bioresour Technol; 2009 Mar 25; 100(5):1797-802. PubMed ID: 19027291
    [Abstract] [Full Text] [Related]

  • 18. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.
    Li Z, Zhao W, Meng B, Liu C, Zhu Q, Zhao G.
    Bioresour Technol; 2008 Nov 25; 99(16):7616-22. PubMed ID: 18343656
    [Abstract] [Full Text] [Related]

  • 19. Reaction kinetics of the hydrothermal treatment of lignin.
    Zhang B, Huang HJ, Ramaswamy S.
    Appl Biochem Biotechnol; 2008 Mar 25; 147(1-3):119-31. PubMed ID: 18401758
    [Abstract] [Full Text] [Related]

  • 20. Catalytic combustion of volatile organic compounds.
    Everaert K, Baeyens J.
    J Hazard Mater; 2004 Jun 18; 109(1-3):113-39. PubMed ID: 15177752
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 48.