These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
263 related items for PubMed ID: 19369971
1. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. ISME J; 2009 Aug; 3(8):977-91. PubMed ID: 19369971 [Abstract] [Full Text] [Related]
2. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Mazzola M, Funnell DL, Raaijmakers JM. Microb Ecol; 2004 Oct; 48(3):338-48. PubMed ID: 15692854 [Abstract] [Full Text] [Related]
3. Mechanisms of natural soil suppressiveness to soilborne diseases. Mazzola M. Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):557-64. PubMed ID: 12448751 [Abstract] [Full Text] [Related]
4. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. Bergsma-Vlami M, Prins ME, Raaijmakers JM. FEMS Microbiol Ecol; 2005 Mar 01; 52(1):59-69. PubMed ID: 16329893 [Abstract] [Full Text] [Related]
5. Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G. New Phytol; 2007 Mar 01; 173(4):861-872. PubMed ID: 17286834 [Abstract] [Full Text] [Related]
6. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms. Mitsuboshi M, Kioka Y, Noguchi K, Asakawa S. Microbes Environ; 2018 Mar 29; 33(1):58-65. PubMed ID: 29459498 [Abstract] [Full Text] [Related]
7. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS. Plant Biol (Stuttg); 2007 Jan 29; 9(1):4-20. PubMed ID: 17058178 [Abstract] [Full Text] [Related]
8. Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity. Sekar J, Prabavathy VR. FEMS Microbiol Ecol; 2014 Jul 29; 89(1):32-46. PubMed ID: 24819774 [Abstract] [Full Text] [Related]
9. A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. Frapolli M, Moënne-Loccoz Y, Meyer J, Défago G. FEMS Microbiol Ecol; 2008 Jun 29; 64(3):468-81. PubMed ID: 18393988 [Abstract] [Full Text] [Related]
10. Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM. FEMS Microbiol Ecol; 2006 Mar 29; 55(3):351-68. PubMed ID: 16466375 [Abstract] [Full Text] [Related]
11. Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere. Saikia R, Sarma RK, Yadav A, Bora TC. Curr Microbiol; 2011 Feb 29; 62(2):434-44. PubMed ID: 20689953 [Abstract] [Full Text] [Related]
12. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber. Bradley GG, Punja ZK. Can J Microbiol; 2010 Nov 29; 56(11):896-905. PubMed ID: 21076480 [Abstract] [Full Text] [Related]
13. Interplay between wheat cultivars, biocontrol pseudomonads, and soil. Meyer JB, Lutz MP, Frapolli M, Péchy-Tarr M, Rochat L, Keel C, Défago G, Maurhofer M. Appl Environ Microbiol; 2010 Sep 29; 76(18):6196-204. PubMed ID: 20675454 [Abstract] [Full Text] [Related]
14. Assessment of genotypic diversity of antibiotic-producing pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Bergsma-Vlami M, Prins ME, Staats M, Raaijmakers JM. Appl Environ Microbiol; 2005 Feb 29; 71(2):993-1003. PubMed ID: 15691958 [Abstract] [Full Text] [Related]
15. Antifungal metabolites produced by Pseudomonas hunanensis SPT26 effective in biocontrol of fusarium wilt of Lycopersicum esculentum under saline conditions. Verma P, Bhattacharya A, Bharti C, Arora NK. World J Microbiol Biotechnol; 2024 Aug 20; 40(10):305. PubMed ID: 39160389 [Abstract] [Full Text] [Related]
16. Microbial Antagonism at the Root Level Is Involved in the Suppression of Fusarium Wilt by the Combination of Nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Duijff BJ, Recorbet G, Bakker PA, Loper JE, Lemanceau P. Phytopathology; 1999 Nov 20; 89(11):1073-9. PubMed ID: 18944664 [Abstract] [Full Text] [Related]
17. Detection of phlD gene in some fluorescent pseudomonads isolated from Iran and its relative with antifungal activities. Afsharmanesh H, Ahmadzadeh M, Sharifi-Tehrani A, Javan-Nikkhah M, Ghazanfari K. Commun Agric Appl Biol Sci; 2007 Nov 20; 72(4):941-50. PubMed ID: 18396832 [Abstract] [Full Text] [Related]
18. Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. Ramette A, Moënne-Loccoz Y, Défago G. FEMS Microbiol Ecol; 2006 Mar 20; 55(3):369-81. PubMed ID: 16466376 [Abstract] [Full Text] [Related]
19. Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Akutsu K, Sawada H. Biocontrol Sci; 2007 Mar 20; 12(1):1-6. PubMed ID: 17408002 [Abstract] [Full Text] [Related]
20. Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. Sarma MV, Kumar V, Saharan K, Srivastava R, Sharma AK, Prakash A, Sahai V, Bisaria VS. J Appl Microbiol; 2011 Aug 20; 111(2):456-66. PubMed ID: 21624018 [Abstract] [Full Text] [Related] Page: [Next] [New Search]