These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 19370072

  • 1. Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae.
    Courchesne WE, Tunc M, Liao S.
    Can J Microbiol; 2009 Mar; 55(3):288-303. PubMed ID: 19370072
    [Abstract] [Full Text] [Related]

  • 2. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS, Zhou X, Ding MZ, Yuan YJ.
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [Abstract] [Full Text] [Related]

  • 3. Phenotype analysis of Saccharomyces cerevisiae mutants with deletions in Pir cell wall glycoproteins.
    Mazán M, Mazánová K, Farkas V.
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):335-42. PubMed ID: 18278564
    [Abstract] [Full Text] [Related]

  • 4. Deletion of MCD 4 involved in glycosylphosphatidylinositol (GPI) anchor synthesis leads to an increase in beta-1,6-glucan level and a decrease in GPI-anchored protein and mannan levels in the cell wall of Saccharomyces cerevisiae.
    Maneesri J, Azuma M, Sakai Y, Igarashi K, Matsumoto T, Fukuda H, Kondo A, Ooshima H.
    J Biosci Bioeng; 2005 Apr; 99(4):354-60. PubMed ID: 16233801
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Saccharomyces cerevisiae Big1p, a putative endoplasmic reticulum membrane protein required for normal levels of cell wall beta-1,6-glucan.
    Azuma M, Levinson JN, Pagé N, Bussey H.
    Yeast; 2002 Jun 30; 19(9):783-93. PubMed ID: 12112232
    [Abstract] [Full Text] [Related]

  • 7. Functional analysis of the cysteine residues and the repetitive sequence of Saccharomyces cerevisiae Pir4/Cis3: the repetitive sequence is needed for binding to the cell wall beta-1,3-glucan.
    Castillo L, Martinez AI, Garcerá A, Elorza MV, Valentín E, Sentandreu R.
    Yeast; 2003 Aug 30; 20(11):973-83. PubMed ID: 12898712
    [Abstract] [Full Text] [Related]

  • 8. Effects of amiodarone on K+, internal pH and Ca2+ homeostasis in Saccharomyces cerevisiae.
    Peña A, Calahorra M, Michel B, Ramírez J, Sánchez NS.
    FEMS Yeast Res; 2009 Sep 30; 9(6):832-48. PubMed ID: 19656199
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A refined method for the determination of Saccharomyces cerevisiae cell wall composition and beta-1,6-glucan fine structure.
    Magnelli P, Cipollo JF, Abeijon C.
    Anal Biochem; 2002 Feb 01; 301(1):136-50. PubMed ID: 11811978
    [Abstract] [Full Text] [Related]

  • 11. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae.
    Singh-Babak SD, Shekhar T, Smith AM, Giaever G, Nislow C, Cowen LE.
    Mol Biosyst; 2012 Oct 01; 8(10):2575-84. PubMed ID: 22751784
    [Abstract] [Full Text] [Related]

  • 12. Modulation of Congo-red-induced aberrations in the yeast Saccharomyces cerevisiae by the general stress response protein Hsp12p.
    Karreman RJ, Lindsey GG.
    Can J Microbiol; 2007 Nov 01; 53(11):1203-10. PubMed ID: 18026214
    [Abstract] [Full Text] [Related]

  • 13. A yeast strain biosensor to detect cell wall-perturbing agents.
    Rodriguez-Peña JM, Diez-Muñiz S, Nombela C, Arroyo J.
    J Biotechnol; 2008 Feb 01; 133(3):311-7. PubMed ID: 18055054
    [Abstract] [Full Text] [Related]

  • 14. [Yeast cell ultrastructure after amiodarone treatment].
    Ozhovan SM, Knorre DA, Severin FF, Bakeeva LE.
    Tsitologiia; 2009 Feb 01; 51(11):911-6. PubMed ID: 20058809
    [Abstract] [Full Text] [Related]

  • 15. Binding assay for incorporation of alkali-extractable proteins in the Saccharomyces cerevisiae cell wall.
    Teparić R, Stuparević I, Mrsa V.
    Yeast; 2007 Apr 01; 24(4):259-66. PubMed ID: 17315268
    [Abstract] [Full Text] [Related]

  • 16. Polyamines and cell wall organization in Saccharomyces cerevisiae.
    Miret JJ, Solari AJ, Barderi PA, Goldemberg SH.
    Yeast; 1992 Dec 01; 8(12):1033-41. PubMed ID: 1293883
    [Abstract] [Full Text] [Related]

  • 17. The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall.
    Aimanianda V, Simenel C, Garnaud C, Clavaud C, Tada R, Barbin L, Mouyna I, Heddergott C, Popolo L, Ohya Y, Delepierre M, Latge JP.
    mBio; 2017 Jun 20; 8(3):. PubMed ID: 28634239
    [Abstract] [Full Text] [Related]

  • 18. The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives.
    Simões T, Mira NP, Fernandes AR, Sá-Correia I.
    Appl Environ Microbiol; 2006 Nov 20; 72(11):7168-75. PubMed ID: 16980434
    [Abstract] [Full Text] [Related]

  • 19. The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling.
    Straede A, Corran A, Bundy J, Heinisch JJ.
    Yeast; 2007 Apr 20; 24(4):321-34. PubMed ID: 17397109
    [Abstract] [Full Text] [Related]

  • 20. Saccharomyces cerevisiae mutant displaying beta-glucans on cell surface.
    Sakai Y, Azuma M, Takada Y, Umeyama T, Kaneko A, Fujita T, Igarashi K, Ooshima H.
    J Biosci Bioeng; 2007 Feb 20; 103(2):161-6. PubMed ID: 17368399
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.