These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


752 related items for PubMed ID: 19370237

  • 21. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J, Surapaneni R, Gale BK.
    Lab Chip; 2009 May 07; 9(9):1290-3. PubMed ID: 19370251
    [Abstract] [Full Text] [Related]

  • 22. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer R.
    Lab Chip; 2005 Dec 07; 5(12):1380-6. PubMed ID: 16286969
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors.
    Zhang Q, Xu JJ, Chen HY.
    Electrophoresis; 2006 Dec 07; 27(24):4943-51. PubMed ID: 17117456
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.
    Cooksey GA, Plant AL, Atencia J.
    Lab Chip; 2009 May 07; 9(9):1298-300. PubMed ID: 19370253
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds.
    Chao SH, Carlson R, Meldrum DR.
    Lab Chip; 2007 May 07; 7(5):641-3. PubMed ID: 17476386
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J, Ellis AV, Voelcker NH.
    Electrophoresis; 2010 Jan 07; 31(1):2-16. PubMed ID: 20039289
    [Abstract] [Full Text] [Related]

  • 35. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N, Yang C, Lam YC.
    Electrophoresis; 2010 Aug 07; 31(15):2622-31. PubMed ID: 20665920
    [Abstract] [Full Text] [Related]

  • 36. A simple method for fabricating patterned curvilinear microstructures in poly(dimethylsiloxane) by selective wetting.
    Ke X, Tang J.
    Chemphyschem; 2013 Apr 02; 14(5):946-51. PubMed ID: 23436571
    [Abstract] [Full Text] [Related]

  • 37. Microfluidic devices for size-dependent separation of liver cells.
    Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M, Okano T.
    Biomed Microdevices; 2007 Oct 02; 9(5):637-45. PubMed ID: 17530413
    [Abstract] [Full Text] [Related]

  • 38. Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures.
    Faid K, Voicu R, Bani-Yaghoub M, Tremblay R, Mealing G, Py C, Barjovanu R.
    Biomed Microdevices; 2005 Sep 02; 7(3):179-84. PubMed ID: 16133804
    [Abstract] [Full Text] [Related]

  • 39. Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
    Hellmich W, Regtmeier J, Duong TT, Ros R, Anselmetti D, Ros A.
    Langmuir; 2005 Aug 02; 21(16):7551-7. PubMed ID: 16042494
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 38.