These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 19373558

  • 21. Simple patient-based transmantle pressure and shear estimate from cine phase-contrast MRI in cerebral aqueduct.
    Bardan G, Plouraboué F, Zagzoule M, Balédent O.
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2874-83. PubMed ID: 22893365
    [Abstract] [Full Text] [Related]

  • 22. Evaluating the effect of hydrocephalus cause on the manner of changes in the effective parameters and clinical symptoms of the disease.
    Gholampour S, Fatouraee N, Seddighi AS, Seddighi A.
    J Clin Neurosci; 2017 Jan; 35():50-55. PubMed ID: 27773546
    [Abstract] [Full Text] [Related]

  • 23. A mathematical model of blood, cerebrospinal fluid and brain dynamics.
    Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn R.
    J Math Biol; 2009 Dec; 59(6):729-59. PubMed ID: 19219605
    [Abstract] [Full Text] [Related]

  • 24. Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images.
    Bradley WG, Kortman KE, Burgoyne B.
    Radiology; 1986 Jun; 159(3):611-6. PubMed ID: 3704142
    [Abstract] [Full Text] [Related]

  • 25. Effect of non-linear permeability in a spherically symmetric model of hydrocephalus.
    Sobey I, Wirth B.
    Math Med Biol; 2006 Dec; 23(4):339-61. PubMed ID: 16740628
    [Abstract] [Full Text] [Related]

  • 26. MRI tracer study of the cerebrospinal fluid drainage pathway in normal and hydrocephalic guinea pig brain.
    Yamada S, Shibata M, Scadeng M, Bluml S, Nguy C, Ross B, McComb JG.
    Tokai J Exp Clin Med; 2005 Apr; 30(1):21-9. PubMed ID: 15952295
    [Abstract] [Full Text] [Related]

  • 27. Ventricular wall granulations and draining of cerebrospinal fluid in chronic giant hydrocephalus.
    Masdeu JC, Pascual B, Bressi F, Casale M, Prieto E, Arbizu J, Fernández-Seara MA.
    Arch Neurol; 2009 Feb; 66(2):262-7. PubMed ID: 19204166
    [Abstract] [Full Text] [Related]

  • 28. Analytic solution during an infusion test of the linear unsteady poroelastic equations in a spherically symmetric model of the brain.
    Wirth B, Sobey I.
    Math Med Biol; 2009 Mar; 26(1):25-61. PubMed ID: 19050059
    [Abstract] [Full Text] [Related]

  • 29. Cerebrospinal fluid pathways from cisterns to ventricles in N-butyl cyanoacrylate-induced hydrocephalic rats.
    Park JH, Park YS, Suk JS, Park SW, Hwang SN, Nam TK, Kim YB, Lee WB.
    J Neurosurg Pediatr; 2011 Dec; 8(6):640-6. PubMed ID: 22132924
    [Abstract] [Full Text] [Related]

  • 30. Ventricular volume regulation: a mathematical model and computer simulation.
    Rekate HL, Brodkey JA, Chizeck HJ, el Sakka W, Ko WH.
    Pediatr Neurosci; 1988 Dec; 14(2):77-84. PubMed ID: 3075040
    [Abstract] [Full Text] [Related]

  • 31. Patient-specific biomechanical modeling of ventricular enlargement in hydrocephalus from longitudinal magnetic resonance imaging.
    Chen Y, Fan Z, Ji S, Muenzer J, An H, Lin W.
    Med Image Comput Comput Assist Interv; 2013 Dec; 16(Pt 3):291-8. PubMed ID: 24505773
    [Abstract] [Full Text] [Related]

  • 32. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature.
    Wagshul ME, Chen JJ, Egnor MR, McCormack EJ, Roche PE.
    J Neurosurg; 2006 May; 104(5):810-9. PubMed ID: 16703889
    [Abstract] [Full Text] [Related]

  • 33. Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain.
    Sweetman B, Xenos M, Zitella L, Linninger AA.
    Comput Biol Med; 2011 Feb; 41(2):67-75. PubMed ID: 21215965
    [Abstract] [Full Text] [Related]

  • 34. New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles.
    Klarica M, Oresković D, Bozić B, Vukić M, Butković V, Bulat M.
    Neuroscience; 2009 Feb 18; 158(4):1397-405. PubMed ID: 19111908
    [Abstract] [Full Text] [Related]

  • 35. Human intracranial pulsatility during the cardiac cycle: a computational modelling framework.
    Causemann M, Vinje V, Rognes ME.
    Fluids Barriers CNS; 2022 Nov 01; 19(1):84. PubMed ID: 36320038
    [Abstract] [Full Text] [Related]

  • 36. [Observation of CSF pulsatile flow in MRI--the signal void phenomenon].
    Ohara S, Matsumoto T, Nagai H, Banno T.
    No To Shinkei; 1987 Oct 01; 39(10):991-6. PubMed ID: 3435689
    [Abstract] [Full Text] [Related]

  • 37. SPAMM, cine phase contrast imaging and fast spin-echo T2-weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow.
    Connor SE, O'Gorman R, Summers P, Simmons A, Moore EM, Chandler C, Jarosz JM.
    Clin Radiol; 2001 Sep 01; 56(9):763-72. PubMed ID: 11585399
    [Abstract] [Full Text] [Related]

  • 38. Dynamic model of communicating hydrocephalus for surgery simulation.
    Clatz O, Litrico S, Delingette H, Paquis P, Ayache N.
    IEEE Trans Biomed Eng; 2007 Apr 01; 54(4):755-8. PubMed ID: 17405384
    [Abstract] [Full Text] [Related]

  • 39. MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension.
    Greitz D, Hannerz J, Rähn T, Bolander H, Ericsson A.
    Acta Radiol; 1994 May 01; 35(3):204-11. PubMed ID: 8192953
    [Abstract] [Full Text] [Related]

  • 40. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J, Lundkvist B, Eklund A, Koskinen LO, Kristensen B.
    Acta Neurol Scand; 2004 Sep 01; 110(3):154-60. PubMed ID: 15285771
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.