These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 19373896

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Correlation between performance of QM/MM docking and simple classification of binding sites.
    Chung JY, Hah JM, Cho AE.
    J Chem Inf Model; 2009 Oct; 49(10):2382-7. PubMed ID: 19799409
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics.
    Gräter F, Schwarzl SM, Dejaegere A, Fischer S, Smith JC.
    J Phys Chem B; 2005 May 26; 109(20):10474-83. PubMed ID: 16852269
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions.
    Sakharov DV, Lim C.
    J Comput Chem; 2009 Jan 30; 30(2):191-202. PubMed ID: 18566982
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Modeling of metal interaction geometries for protein-ligand docking.
    Seebeck B, Reulecke I, Kämper A, Rarey M.
    Proteins; 2008 May 15; 71(3):1237-54. PubMed ID: 18041759
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A test of ligand field molecular mechanics as an efficient alternative to QM/MM for modelling metalloproteins: the structures of oxidised type I copper centres.
    Deeth RJ.
    Chem Commun (Camb); 2006 Jun 28; (24):2551-3. PubMed ID: 16779474
    [Abstract] [Full Text] [Related]

  • 12. Coupled atomic charge selectivity for optimal ligand-charge distributions at protein binding sites.
    Bhat S, Sulea T, Purisima EO.
    J Comput Chem; 2006 Dec 28; 27(16):1899-907. PubMed ID: 16988958
    [Abstract] [Full Text] [Related]

  • 13. Denaturation of metalloproteins with EDTA to facilitate enzymatic digestion and mass fingerprinting.
    Janecki DJ, Reilly JP.
    Rapid Commun Mass Spectrom; 2005 Dec 28; 19(10):1268-72. PubMed ID: 15834845
    [Abstract] [Full Text] [Related]

  • 14. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T, Jayaram B.
    Proteins; 2007 Jun 01; 67(4):1167-78. PubMed ID: 17380508
    [Abstract] [Full Text] [Related]

  • 15. HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases.
    Floriano WB, Vaidehi N, Zamanakos G, Goddard WA.
    J Med Chem; 2004 Jan 01; 47(1):56-71. PubMed ID: 14695820
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM, Li X, Wei W, Li Y, Duan Z, Zheng J, Huang T.
    Chemistry; 2007 Jan 01; 13(11):3120-30. PubMed ID: 17201001
    [Abstract] [Full Text] [Related]

  • 19. Combined use of XAFS and crystallography for studying protein-ligand interactions in metalloproteins.
    Strange RW, Hasnain SS.
    Methods Mol Biol; 2005 Jan 01; 305():167-96. PubMed ID: 15939998
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.