These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
710 related items for PubMed ID: 19375261
1. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. Ferracane R, Graziani G, Gallo M, Fogliano V, Ritieni A. J Pharm Biomed Anal; 2010 Jan 20; 51(2):399-404. PubMed ID: 19375261 [Abstract] [Full Text] [Related]
2. Comparative analysis of caffeoylquinic acids and lignans in roots and seeds among various burdock (Arctium lappa) genotypes with high antioxidant activity. Liu J, Cai YZ, Wong RN, Lee CK, Tang SC, Sze SC, Tong Y, Zhang Y. J Agric Food Chem; 2012 Apr 25; 60(16):4067-75. PubMed ID: 22497441 [Abstract] [Full Text] [Related]
3. Identification of hydroxycinnamoylquinic acids of arnica flowers and burdock roots using a standardized LC-DAD-ESI/MS profiling method. Lin LZ, Harnly JM. J Agric Food Chem; 2008 Nov 12; 56(21):10105-14. PubMed ID: 18837557 [Abstract] [Full Text] [Related]
4. Isolation and identification of arctiin and arctigenin in leaves of burdock (Arctium lappa L.) by polyamide column chromatography in combination with HPLC-ESI/MS. Liu S, Chen K, Schliemann W, Strack D. Phytochem Anal; 2005 Nov 12; 16(2):86-9. PubMed ID: 15881114 [Abstract] [Full Text] [Related]
5. UPLC and HPLC of caffeoyl esters in wild and cultivated Arctium lappa L. Haghi G, Hatami A, Mehran M. Food Chem; 2013 May 01; 138(1):321-6. PubMed ID: 23265494 [Abstract] [Full Text] [Related]
6. Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry. Jaiswal R, Kuhnert N. Food Funct; 2011 Jan 01; 2(1):63-71. PubMed ID: 21773587 [Abstract] [Full Text] [Related]
7. A profile of bioactive compounds of Rumex vesicarius L. El-Hawary SA, Sokkar NM, Ali ZY, Yehia MM. J Food Sci; 2011 Oct 01; 76(8):C1195-202. PubMed ID: 22417584 [Abstract] [Full Text] [Related]
8. HPLC-UV and LC-MS Analyses of Acylquinic Acids in Geigeria alata (DC) Oliv. & Hiern. and their Contribution to Antioxidant and Antimicrobial Capacity. Zheleva-Dimitrova D, Gevrenova R, Zaharieva MM, Najdenski H, Ruseva S, Lozanov V, Balabanova V, Yagi S, Momekov G, Mitev V. Phytochem Anal; 2017 May 01; 28(3):176-184. PubMed ID: 27910164 [Abstract] [Full Text] [Related]
9. Semi-Preparative Separation of 10 Caffeoylquinic Acid Derivatives Using High Speed Counter-Current Chromatogaphy Combined with Semi-Preparative HPLC from the Roots of Burdock (Arctium lappa L.). Zheng Z, Wang X, Liu P, Li M, Dong H, Qiao X. Molecules; 2018 Feb 15; 23(2):. PubMed ID: 29462864 [Abstract] [Full Text] [Related]
10. Effect of in vitro gastro-intestinal digestion on the phenolic composition and antioxidant capacity of Burdock roots at different harvest time. Herrera-Balandrano DD, Beta T, Chai Z, Zhang X, Li Y, Huang W. Food Chem; 2021 Oct 01; 358():129897. PubMed ID: 33915426 [Abstract] [Full Text] [Related]
11. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber. Touriño S, Fuguet E, Jáuregui O, Saura-Calixto F, Cascante M, Torres JL. Rapid Commun Mass Spectrom; 2008 Nov 01; 22(22):3489-500. PubMed ID: 18853405 [Abstract] [Full Text] [Related]
12. Antioxidant activity and chemical composition of the fractions from burdock leaves. Lou Z, Wang H, Li J, Chen S, Zhu S, Ma C, Wang Z. J Food Sci; 2010 Jun 01; 75(5):C413-9. PubMed ID: 20629861 [Abstract] [Full Text] [Related]
13. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf. Silinsin M, Bursal E. Nat Prod Res; 2018 Jun 01; 32(12):1467-1471. PubMed ID: 28697630 [Abstract] [Full Text] [Related]
14. Liquid chromatography/electrospray ionization tandem mass spectrometry profiling of compounds from the infusion of Byrsonima fagifolia Niedenzu. Sannomiya M, dos Santos LC, Carbone V, Napolitano A, Piacente S, Pizza C, Souza-Brito AR, Vilegas W. Rapid Commun Mass Spectrom; 2007 Jun 01; 21(8):1393-1400. PubMed ID: 17370245 [Abstract] [Full Text] [Related]
15. Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp. Sudjaroen Y, Haubner R, Würtele G, Hull WE, Erben G, Spiegelhalder B, Changbumrung S, Bartsch H, Owen RW. Food Chem Toxicol; 2005 Nov 01; 43(11):1673-82. PubMed ID: 16000233 [Abstract] [Full Text] [Related]
16. Isolation and identification of antioxidant compounds from Ligularia fischeri. Shang YF, Kim SM, Song DG, Pan CH, Lee WJ, Um BH. J Food Sci; 2010 Aug 01; 75(6):C530-5. PubMed ID: 20722907 [Abstract] [Full Text] [Related]
17. RP-HPLC analysis of the phenolic compounds of plant extracts. investigation of their antioxidant capacity and antimicrobial activity. Proestos C, Chorianopoulos N, Nychas GJ, Komaitis M. J Agric Food Chem; 2005 Feb 23; 53(4):1190-5. PubMed ID: 15713039 [Abstract] [Full Text] [Related]
18. Antioxidant activity and phenolic composition of Lavandin (Lavandula x intermedia Emeric ex Loiseleur) waste. Torras-Claveria L, Jauregui O, Bastida J, Codina C, Viladomat F. J Agric Food Chem; 2007 Oct 17; 55(21):8436-43. PubMed ID: 17927148 [Abstract] [Full Text] [Related]
19. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Mylonaki S, Kiassos E, Makris DP, Kefalas P. Anal Bioanal Chem; 2008 Nov 17; 392(5):977-85. PubMed ID: 18762919 [Abstract] [Full Text] [Related]
20. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). Bettaieb I, Bourgou S, Wannes WA, Hamrouni I, Limam F, Marzouk B. J Agric Food Chem; 2010 Oct 13; 58(19):10410-8. PubMed ID: 20809647 [Abstract] [Full Text] [Related] Page: [Next] [New Search]