These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 19377186

  • 21. Impact of IQ, computer-gaming skills, general dexterity, and laparoscopic experience on performance with the da Vinci surgical system.
    Hagen ME, Wagner OJ, Inan I, Morel P.
    Int J Med Robot; 2009 Sep; 5(3):327-31. PubMed ID: 19455549
    [Abstract] [Full Text] [Related]

  • 22. Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system?
    Lerner MA, Ayalew M, Peine WJ, Sundaram CP.
    J Endourol; 2010 Mar; 24(3):467-72. PubMed ID: 20334558
    [Abstract] [Full Text] [Related]

  • 23. Training in virtual environments: transfer to real world tasks and equivalence to real task training.
    Rose FD, Attree EA, Brooks BM, Parslow DM, Penn PR, Ambihaipahan N.
    Ergonomics; 2000 Apr; 43(4):494-511. PubMed ID: 10801083
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Transfer of systematic computer game training in surgical novices on performance in virtual reality image guided surgical simulators.
    Kolga Schlickum M, Hedman L, Enochsson L, Kjellin A, Felländer-Tsai L.
    Stud Health Technol Inform; 2008 Apr; 132():210-5. PubMed ID: 18391288
    [Abstract] [Full Text] [Related]

  • 26. Technological advances in robotic-assisted laparoscopic surgery.
    Tan GY, Goel RK, Kaouk JH, Tewari AK.
    Urol Clin North Am; 2009 May; 36(2):237-49, ix. PubMed ID: 19406324
    [Abstract] [Full Text] [Related]

  • 27. Skills learning in robot-assisted surgery is benefited by task-specific augmented feedback.
    Vallabhajosula S, Judkins TN, Mukherjee M, Suh IH, Oleynikov D, Siu KC.
    Surg Innov; 2013 Dec; 20(6):639-47. PubMed ID: 23575913
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Surgeon-controlled visualization techniques for virtual reality-guided cardiac surgery.
    Lo J, Moore J, Wedlake C, Guiraudon G, Eagleson R, Peters T.
    Stud Health Technol Inform; 2009 Dec; 142():162-7. PubMed ID: 19377140
    [Abstract] [Full Text] [Related]

  • 32. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology.
    Ng I, Hwang PY, Kumar D, Lee CK, Kockro RA, Sitoh YY.
    Acta Neurochir (Wien); 2009 May; 151(5):453-63; discussion 463. PubMed ID: 19319471
    [Abstract] [Full Text] [Related]

  • 33. Brain-computer interface: changes in performance using virtual reality techniques.
    Ron-Angevin R, Díaz-Estrella A.
    Neurosci Lett; 2009 Jan 09; 449(2):123-7. PubMed ID: 19000739
    [Abstract] [Full Text] [Related]

  • 34. Effects of tactile cueing on concurrent performance of military and robotics tasks in a simulated multitasking environment.
    Chen JY, Terrence PI.
    Ergonomics; 2008 Aug 09; 51(8):1137-52. PubMed ID: 18608472
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. A simple master-slave control mapping setup to learn robot-assisted surgery manipulation.
    Punak S, Kurenov S.
    Stud Health Technol Inform; 2012 Aug 09; 173():356-8. PubMed ID: 22357017
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.