These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 19383465

  • 1. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.
    Silva LC, Futerman AH, Prieto M.
    Biophys J; 2009 Apr 22; 96(8):3210-22. PubMed ID: 19383465
    [Abstract] [Full Text] [Related]

  • 2. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y, Ohba T, Miyata H, Ohki K.
    Biochim Biophys Acta; 2006 Feb 22; 1758(2):145-53. PubMed ID: 16580624
    [Abstract] [Full Text] [Related]

  • 3. Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes.
    Chao L, Gast AP, Hatton TA, Jensen KF.
    Langmuir; 2010 Jan 05; 26(1):344-56. PubMed ID: 19863058
    [Abstract] [Full Text] [Related]

  • 4. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN, Fernandes F, Fedorov A, Futerman AH, Silva LC, Prieto M.
    Biochim Biophys Acta; 2013 Sep 05; 1828(9):2099-110. PubMed ID: 23702462
    [Abstract] [Full Text] [Related]

  • 5. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM, Subramanian M, Kinnunen PK.
    Biochemistry; 1998 Dec 15; 37(50):17562-70. PubMed ID: 9860872
    [Abstract] [Full Text] [Related]

  • 6. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S, Fanani ML, Maggio B.
    Biophys J; 2005 Jan 15; 88(1):287-304. PubMed ID: 15489298
    [Abstract] [Full Text] [Related]

  • 7. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders.
    Megha, Bakht O, London E.
    J Biol Chem; 2006 Aug 04; 281(31):21903-21913. PubMed ID: 16735517
    [Abstract] [Full Text] [Related]

  • 8. Cholesterol modulation of sphingomyelinase activity at physiological temperatures.
    Contreras FX, Sot J, Ruiz-Argüello MB, Alonso A, Goñi FM.
    Chem Phys Lipids; 2004 Jul 04; 130(2):127-34. PubMed ID: 15172829
    [Abstract] [Full Text] [Related]

  • 9. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol.
    González-Ramírez EJ, Artetxe I, García-Arribas AB, Goñi FM, Alonso A.
    Langmuir; 2019 Apr 16; 35(15):5305-5315. PubMed ID: 30924341
    [Abstract] [Full Text] [Related]

  • 10. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J, Bagatolli LA, Goñi FM, Alonso A.
    Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266
    [Abstract] [Full Text] [Related]

  • 11. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase.
    Ale EC, Maggio B, Fanani ML.
    Biochim Biophys Acta; 2012 Nov 01; 1818(11):2767-76. PubMed ID: 22763279
    [Abstract] [Full Text] [Related]

  • 12. Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes.
    Ira, Johnston LJ.
    Biochim Biophys Acta; 2008 Jan 01; 1778(1):185-97. PubMed ID: 17988649
    [Abstract] [Full Text] [Related]

  • 13. Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase.
    Boulgaropoulos B, Amenitsch H, Laggner P, Pabst G.
    Biophys J; 2010 Jul 21; 99(2):499-506. PubMed ID: 20643068
    [Abstract] [Full Text] [Related]

  • 14. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers.
    Fanani ML, Härtel S, Oliveira RG, Maggio B.
    Biophys J; 2002 Dec 21; 83(6):3416-24. PubMed ID: 12496108
    [Abstract] [Full Text] [Related]

  • 15. Sphingomyelinase acts by an area-activated mechanism on the liquid-expanded phase of sphingomyelin monolayers.
    De Tullio L, Maggio B, Fanani ML.
    J Lipid Res; 2008 Nov 21; 49(11):2347-55. PubMed ID: 18509194
    [Abstract] [Full Text] [Related]

  • 16. Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid.
    Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M.
    Biophys J; 2007 Jan 15; 92(2):502-16. PubMed ID: 17056734
    [Abstract] [Full Text] [Related]

  • 17. Sphingomyelinase and membrane sphingomyelin content: determinants ofProximal tubule cell susceptibility to injury.
    Zager RA, Burkhart KM, Johnson A.
    J Am Soc Nephrol; 2000 May 15; 11(5):894-902. PubMed ID: 10770967
    [Abstract] [Full Text] [Related]

  • 18. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity.
    Jiménez-Rojo N, García-Arribas AB, Sot J, Alonso A, Goñi FM.
    Biochim Biophys Acta; 2014 Jan 15; 1838(1 Pt B):456-64. PubMed ID: 24144542
    [Abstract] [Full Text] [Related]

  • 19. Cholesterol interactions with ceramide and sphingomyelin.
    García-Arribas AB, Alonso A, Goñi FM.
    Chem Phys Lipids; 2016 Sep 15; 199():26-34. PubMed ID: 27132117
    [Abstract] [Full Text] [Related]

  • 20. Full CD3/TCR activation through cholesterol-depleted lipid rafts.
    Rouquette-Jazdanian AK, Pelassy C, Breittmayer JP, Aussel C.
    Cell Signal; 2007 Jul 15; 19(7):1404-18. PubMed ID: 17303381
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.