These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


317 related items for PubMed ID: 19383727

  • 1. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques.
    Vickers AA, Potter NJ, Fishwick CW, Chopra I, O'Neill AJ.
    J Antimicrob Chemother; 2009 Jun; 63(6):1112-7. PubMed ID: 19383727
    [Abstract] [Full Text] [Related]

  • 2. Emergence and maintenance of resistance to fluoroquinolones and coumarins in Staphylococcus aureus: predictions from in vitro studies.
    Vickers AA, O'Neill AJ, Chopra I.
    J Antimicrob Chemother; 2007 Aug; 60(2):269-73. PubMed ID: 17556355
    [Abstract] [Full Text] [Related]

  • 3. Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity.
    Oefner C, Bandera M, Haldimann A, Laue H, Schulz H, Mukhija S, Parisi S, Weiss L, Lociuro S, Dale GE.
    J Antimicrob Chemother; 2009 Apr; 63(4):687-98. PubMed ID: 19211577
    [Abstract] [Full Text] [Related]

  • 4. Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques.
    Hurdle JG, O'Neill AJ, Ingham E, Fishwick C, Chopra I.
    Antimicrob Agents Chemother; 2004 Nov; 48(11):4366-76. PubMed ID: 15504866
    [Abstract] [Full Text] [Related]

  • 5. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim.
    Heaslet H, Harris M, Fahnoe K, Sarver R, Putz H, Chang J, Subramanyam C, Barreiro G, Miller JR.
    Proteins; 2009 Aug 15; 76(3):706-17. PubMed ID: 19280600
    [Abstract] [Full Text] [Related]

  • 6. Cloning and characterization of a novel trimethoprim-resistant dihydrofolate reductase from a nosocomial isolate of Staphylococcus aureus CM.S2 (IMCJ1454).
    Sekiguchi J, Tharavichitkul P, Miyoshi-Akiyama T, Chupia V, Fujino T, Araake M, Irie A, Morita K, Kuratsuji T, Kirikae T.
    Antimicrob Agents Chemother; 2005 Sep 15; 49(9):3948-51. PubMed ID: 16127079
    [Abstract] [Full Text] [Related]

  • 7. Inhibitory properties and X-ray crystallographic study of the binding of AR-101, AR-102 and iclaprim in ternary complexes with NADPH and dihydrofolate reductase from Staphylococcus aureus.
    Oefner C, Parisi S, Schulz H, Lociuro S, Dale GE.
    Acta Crystallogr D Biol Crystallogr; 2009 Aug 15; 65(Pt 8):751-7. PubMed ID: 19622858
    [Abstract] [Full Text] [Related]

  • 8. The role of intra- and extragenic compensatory mutations in the suppression of fluoroquinolone resistance in a Salmonella Typhimurium gyrA mutant (D87G).
    Preisler A, Heisig P.
    J Antimicrob Chemother; 2009 Feb 15; 63(2):290-4. PubMed ID: 19033246
    [Abstract] [Full Text] [Related]

  • 9. Multiple mechanisms to ameliorate the fitness burden of mupirocin resistance in Salmonella typhimurium.
    Paulander W, Maisnier-Patin S, Andersson DI.
    Mol Microbiol; 2007 May 15; 64(4):1038-48. PubMed ID: 17501926
    [Abstract] [Full Text] [Related]

  • 10. Novel dihydrofolate reductase inhibitors. Structure-based versus diversity-based library design and high-throughput synthesis and screening.
    Wyss PC, Gerber P, Hartman PG, Hubschwerlen C, Locher H, Marty HP, Stahl M.
    J Med Chem; 2003 Jun 05; 46(12):2304-12. PubMed ID: 12773035
    [Abstract] [Full Text] [Related]

  • 11. Efflux-mediated response of Staphylococcus aureus exposed to ethidium bromide.
    Couto I, Costa SS, Viveiros M, Martins M, Amaral L.
    J Antimicrob Chemother; 2008 Sep 05; 62(3):504-13. PubMed ID: 18511413
    [Abstract] [Full Text] [Related]

  • 12. Fragment-based design of symmetrical bis-benzimidazoles as selective inhibitors of the trimethoprim-resistant, type II R67 dihydrofolate reductase.
    Bastien D, Ebert MC, Forge D, Toulouse J, Kadnikova N, Perron F, Mayence A, Huang TL, Vanden Eynde JJ, Pelletier JN.
    J Med Chem; 2012 Apr 12; 55(7):3182-92. PubMed ID: 22424148
    [Abstract] [Full Text] [Related]

  • 13. Directed evolution of trimethoprim resistance in Escherichia coli.
    Watson M, Liu JW, Ollis D.
    FEBS J; 2007 May 12; 274(10):2661-71. PubMed ID: 17451440
    [Abstract] [Full Text] [Related]

  • 14. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydrofolate reductase(s).
    de Groot R, Chaffin DO, Kuehn M, Smith AL.
    Biochem J; 1991 Mar 15; 274 ( Pt 3)(Pt 3):657-62. PubMed ID: 2012595
    [Abstract] [Full Text] [Related]

  • 15. Comparison of full gyrA, gyrB, parC and parE gene sequences between all Ureaplasma parvum and Ureaplasma urealyticum serovars to separate true fluoroquinolone antibiotic resistance mutations from non-resistance polymorphism.
    Beeton ML, Chalker VJ, Kotecha S, Spiller OB.
    J Antimicrob Chemother; 2009 Sep 15; 64(3):529-38. PubMed ID: 19567408
    [Abstract] [Full Text] [Related]

  • 16. Persistence of rRNA operon mutated copies and rapid re-emergence of linezolid resistance in Staphylococcus aureus.
    Tsakris A, Pillai SK, Gold HS, Thauvin-Eliopoulos C, Venkataraman L, Wennersten C, Moellering RC, Eliopoulos GM.
    J Antimicrob Chemother; 2007 Sep 15; 60(3):649-51. PubMed ID: 17623697
    [Abstract] [Full Text] [Related]

  • 17. The isoleucyl-tRNA synthetase mutation V588F conferring mupirocin resistance in glycopeptide-intermediate Staphylococcus aureus is not associated with a significant fitness burden.
    Hurdle JG, O'Neill AJ, Chopra I.
    J Antimicrob Chemother; 2004 Jan 15; 53(1):102-4. PubMed ID: 14657089
    [Abstract] [Full Text] [Related]

  • 18. Mutational 'hot-spots' in mammalian, bacterial and protozoal dihydrofolate reductases associated with antifolate resistance: sequence and structural comparison.
    Volpato JP, Pelletier JN.
    Drug Resist Updat; 2009 Jan 15; 12(1-2):28-41. PubMed ID: 19272832
    [Abstract] [Full Text] [Related]

  • 19. Compensatory mutations in agrC partly restore fitness in vitro to peptide deformylase inhibitor-resistant Staphylococcus aureus.
    Zorzet A, Andersen JM, Nilsson AI, Møller NF, Andersson DI.
    J Antimicrob Chemother; 2012 Aug 15; 67(8):1835-42. PubMed ID: 22577101
    [Abstract] [Full Text] [Related]

  • 20. Compensatory adaptation to the loss of biological fitness associated with acquisition of fusidic acid resistance in Staphylococcus aureus.
    Besier S, Ludwig A, Brade V, Wichelhaus TA.
    Antimicrob Agents Chemother; 2005 Apr 15; 49(4):1426-31. PubMed ID: 15793122
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.