These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
237 related items for PubMed ID: 19386788
21. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites. Sultzman LA, Carruthers A. Biochemistry; 1999 May 18; 38(20):6640-50. PubMed ID: 10350483 [Abstract] [Full Text] [Related]
22. Properties of the human erythrocyte glucose transport protein are determined by cellular context. Levine KB, Robichaud TK, Hamill S, Sultzman LA, Carruthers A. Biochemistry; 2005 Apr 19; 44(15):5606-16. PubMed ID: 15823019 [Abstract] [Full Text] [Related]
23. In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle. Ryder JW, Kawano Y, Chibalin AV, Rincón J, Tsao TS, Stenbit AE, Combatsiaris T, Yang J, Holman GD, Charron MJ, Zierath JR. Biochem J; 1999 Sep 01; 342 ( Pt 2)(Pt 2):321-8. PubMed ID: 10455018 [Abstract] [Full Text] [Related]
24. Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter. Gunnink LK, Busscher BM, Wodarek JA, Rosette KA, Strohbehn LE, Looyenga BD, Louters LL. Biochimie; 2017 Jun 01; 137():99-105. PubMed ID: 28322926 [Abstract] [Full Text] [Related]
25. δ-Opioid receptors stimulate GLUT1-mediated glucose uptake through Src- and IGF-1 receptor-dependent activation of PI3-kinase signalling in CHO cells. Olianas MC, Dedoni S, Onali P. Br J Pharmacol; 2011 Jun 01; 163(3):624-37. PubMed ID: 21250979 [Abstract] [Full Text] [Related]
26. ATP-dependent sugar transport complexity in human erythrocytes. Leitch JM, Carruthers A. Am J Physiol Cell Physiol; 2007 Feb 01; 292(2):C974-86. PubMed ID: 16928769 [Abstract] [Full Text] [Related]
27. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Zottola RJ, Cloherty EK, Coderre PE, Hansen A, Hebert DN, Carruthers A. Biochemistry; 1995 Aug 01; 34(30):9734-47. PubMed ID: 7626644 [Abstract] [Full Text] [Related]
28. Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity. Muraoka A, Hashiramoto M, Clark AE, Edwards LC, Sakura H, Kadowaki T, Holman GD, Kasuga M. Biochem J; 1995 Oct 15; 311 ( Pt 2)(Pt 2):699-704. PubMed ID: 7487915 [Abstract] [Full Text] [Related]
29. Substitution of leucine for tryptophan 412 does not abolish cytochalasin B labeling but markedly decreases the intrinsic activity of GLUT1 glucose transporter. Katagiri H, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Ishihara H, Akanuma Y, Takaku F, Oka Y. J Biol Chem; 1991 Apr 25; 266(12):7769-73. PubMed ID: 2019601 [Abstract] [Full Text] [Related]
30. alpha- and beta-monosaccharide transport in human erythrocytes. Leitch JM, Carruthers A. Am J Physiol Cell Physiol; 2009 Jan 25; 296(1):C151-61. PubMed ID: 18987250 [Abstract] [Full Text] [Related]
32. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism. Cloherty EK, Diamond DL, Heard KS, Carruthers A. Biochemistry; 1996 Oct 08; 35(40):13231-9. PubMed ID: 8855962 [Abstract] [Full Text] [Related]
33. Characterization of GLUT3 protein expressed in Chinese hamster ovary cells. Asano T, Katagiri H, Takata K, Tsukuda K, Lin JL, Ishihara H, Inukai K, Hirano H, Yazaki Y, Oka Y. Biochem J; 1992 Nov 15; 288 ( Pt 1)(Pt 1):189-93. PubMed ID: 1445263 [Abstract] [Full Text] [Related]
34. The role of N-glycosylation of GLUT1 for glucose transport activity. Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y. J Biol Chem; 1991 Dec 25; 266(36):24632-6. PubMed ID: 1761560 [Abstract] [Full Text] [Related]