These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


506 related items for PubMed ID: 19388648

  • 1. Mapping proton wires in proteins: carbonic anhydrase and GFP chromophore biosynthesis.
    Shinobu A, Agmon N.
    J Phys Chem A; 2009 Jul 02; 113(26):7253-66. PubMed ID: 19388648
    [Abstract] [Full Text] [Related]

  • 2. Speeding up proton transfer in a fast enzyme: kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase II.
    Fisher SZ, Tu C, Bhatt D, Govindasamy L, Agbandje-McKenna M, McKenna R, Silverman DN.
    Biochemistry; 2007 Mar 27; 46(12):3803-13. PubMed ID: 17330962
    [Abstract] [Full Text] [Related]

  • 3. Visualizing proton antenna in a high-resolution green fluorescent protein structure.
    Shinobu A, Palm GJ, Schierbeek AJ, Agmon N.
    J Am Chem Soc; 2010 Aug 18; 132(32):11093-102. PubMed ID: 20698675
    [Abstract] [Full Text] [Related]

  • 4. Identification of proton-transfer pathways in human carbonic anhydrase II.
    Roy A, Taraphder S.
    J Phys Chem B; 2007 Sep 06; 111(35):10563-76. PubMed ID: 17691838
    [Abstract] [Full Text] [Related]

  • 5. Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II.
    Fisher Z, Hernandez Prada JA, Tu C, Duda D, Yoshioka C, An H, Govindasamy L, Silverman DN, McKenna R.
    Biochemistry; 2005 Feb 01; 44(4):1097-105. PubMed ID: 15667203
    [Abstract] [Full Text] [Related]

  • 6. Proton transfer in carbonic anhydrase is controlled by electrostatics rather than the orientation of the acceptor.
    Riccardi D, König P, Guo H, Cui Q.
    Biochemistry; 2008 Feb 26; 47(8):2369-78. PubMed ID: 18247480
    [Abstract] [Full Text] [Related]

  • 7. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II.
    Smedarchina Z, Siebrand W, Fernández-Ramos A, Cui Q.
    J Am Chem Soc; 2003 Jan 08; 125(1):243-51. PubMed ID: 12515527
    [Abstract] [Full Text] [Related]

  • 8. Solvent-mediated proton transfer in catalysis by carbonic anhydrase.
    Silverman DN, McKenna R.
    Acc Chem Res; 2007 Aug 08; 40(8):669-75. PubMed ID: 17550224
    [Abstract] [Full Text] [Related]

  • 9. Proton transfer pathways in the mutant His-64-Ala of human carbonic anhydrase II.
    Roy A, Taraphder S.
    Biopolymers; 2006 Aug 15; 82(6):623-30. PubMed ID: 16557501
    [Abstract] [Full Text] [Related]

  • 10. A theoretical study on the detection of proton transfer pathways in some mutants of human carbonic anhydrase II.
    Roy A, Taraphder S.
    J Phys Chem B; 2008 Oct 30; 112(43):13597-607. PubMed ID: 18826189
    [Abstract] [Full Text] [Related]

  • 11. Proton transfer in a Thr200His mutant of human carbonic anhydrase II.
    Bhatt D, Tu C, Fisher SZ, Hernandez Prada JA, McKenna R, Silverman DN.
    Proteins; 2005 Nov 01; 61(2):239-45. PubMed ID: 16106378
    [Abstract] [Full Text] [Related]

  • 12. Structure of bovine carbonic anhydrase II at 1.95 A resolution.
    Saito R, Sato T, Ikai A, Tanaka N.
    Acta Crystallogr D Biol Crystallogr; 2004 Apr 01; 60(Pt 4):792-5. PubMed ID: 15039588
    [Abstract] [Full Text] [Related]

  • 13. Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V.
    Heck RW, Boriack-Sjodin PA, Qian M, Tu C, Christianson DW, Laipis PJ, Silverman DN.
    Biochemistry; 1996 Sep 10; 35(36):11605-11. PubMed ID: 8794740
    [Abstract] [Full Text] [Related]

  • 14. Kinetics of switchable proton escape from a proton-wire within green fluorescence protein.
    Agmon N.
    J Phys Chem B; 2007 Jul 12; 111(27):7870-8. PubMed ID: 17569555
    [Abstract] [Full Text] [Related]

  • 15. Excited states of GFP chromophore and active site studied by the SAC-CI method: effect of protein-environment and mutations.
    Hasegawa JY, Fujimoto K, Swerts B, Miyahara T, Nakatsuji H.
    J Comput Chem; 2007 Nov 30; 28(15):2443-52. PubMed ID: 17721879
    [Abstract] [Full Text] [Related]

  • 16. Structural and kinetic analysis of proton shuttle residues in the active site of human carbonic anhydrase III.
    Elder I, Fisher Z, Laipis PJ, Tu C, McKenna R, Silverman DN.
    Proteins; 2007 Jul 01; 68(1):337-43. PubMed ID: 17427958
    [Abstract] [Full Text] [Related]

  • 17. Disruption of the active site solvent network in carbonic anhydrase II decreases the efficiency of proton transfer.
    Jackman JE, Merz KM, Fierke CA.
    Biochemistry; 1996 Dec 24; 35(51):16421-8. PubMed ID: 8987973
    [Abstract] [Full Text] [Related]

  • 18. Mechanistic aspects of proton chain transfer: a computational study for the green fluorescent protein chromophore.
    Wang S, Smith SC.
    J Phys Chem B; 2006 Mar 16; 110(10):5084-93. PubMed ID: 16526751
    [Abstract] [Full Text] [Related]

  • 19. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
    Wood TI, Barondeau DP, Hitomi C, Kassmann CJ, Tainer JA, Getzoff ED.
    Biochemistry; 2005 Dec 13; 44(49):16211-20. PubMed ID: 16331981
    [Abstract] [Full Text] [Related]

  • 20. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism.
    Fisher SZ, Maupin CM, Budayova-Spano M, Govindasamy L, Tu C, Agbandje-McKenna M, Silverman DN, Voth GA, McKenna R.
    Biochemistry; 2007 Mar 20; 46(11):2930-7. PubMed ID: 17319692
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.