These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
103 related items for PubMed ID: 19394304
1. A protease inhibitor discovery method using fluorescence correlation spectroscopy with position-specific labeled protein substrates. Nakata H, Ohtsuki T, Sisido M. Anal Biochem; 2009 Jul 15; 390(2):121-5. PubMed ID: 19394304 [Abstract] [Full Text] [Related]
2. In-capillary screening of matrix metalloproteinase inhibitors by electrophoretically mediated microanalysis with fluorescence detection. Hai X, Wang X, El-Attug M, Adams E, Hoogmartens J, Van Schepdael A. Anal Chem; 2011 Jan 01; 83(1):425-30. PubMed ID: 21142123 [Abstract] [Full Text] [Related]
3. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates. Askin SP, Morin I, Schaeffer PM. Anal Biochem; 2011 Aug 15; 415(2):126-33. PubMed ID: 21570945 [Abstract] [Full Text] [Related]
4. Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Overall CM, Tam EM, Kappelhoff R, Connor A, Ewart T, Morrison CJ, Puente X, López-Otín C, Seth A. Biol Chem; 2004 Jun 15; 385(6):493-504. PubMed ID: 15255181 [Abstract] [Full Text] [Related]
5. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products. Piccard H, Hu J, Fiten P, Proost P, Martens E, Van den Steen PE, Van Damme J, Opdenakker G. Electrophoresis; 2009 Jul 15; 30(13):2366-77. PubMed ID: 19621364 [Abstract] [Full Text] [Related]
6. Characterization of bacterial proteases with a panel of fluorescent peptide substrates. Wildeboer D, Jeganathan F, Price RG, Abuknesha RA. Anal Biochem; 2009 Jan 15; 384(2):321-8. PubMed ID: 18957278 [Abstract] [Full Text] [Related]
7. A fluorescence turn-on method for real-time monitoring of protease activity based on the electron transfer between a fluorophore labeled oligonucleotide and cytochrome c. Liao D, Li Y, Chen J, Yu C. Anal Chim Acta; 2013 Jun 19; 784():72-6. PubMed ID: 23746411 [Abstract] [Full Text] [Related]
8. Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein. Branchini BR, Rosenberg JC, Ablamsky DM, Taylor KP, Southworth TL, Linder SJ. Anal Biochem; 2011 Jul 15; 414(2):239-45. PubMed ID: 21453669 [Abstract] [Full Text] [Related]
9. A fluorescence quenching assay to discriminate between specific and nonspecific inhibitors of dengue virus protease. Bodenreider C, Beer D, Keller TH, Sonntag S, Wen D, Yap L, Yau YH, Shochat SG, Huang D, Zhou T, Caflisch A, Su XC, Ozawa K, Otting G, Vasudevan SG, Lescar J, Lim SP. Anal Biochem; 2009 Dec 15; 395(2):195-204. PubMed ID: 19682971 [Abstract] [Full Text] [Related]
10. Fluorescence-quenching-based homogeneous caspase-3 activity assay using photon upconversion. Vuojola J, Riuttamäki T, Kulta E, Arppe R, Soukka T. Anal Chim Acta; 2012 May 06; 725():67-73. PubMed ID: 22502613 [Abstract] [Full Text] [Related]
11. Synthesis and evaluation of a novel fluorescent photoprobe for imaging matrix metalloproteinases. Faust A, Waschkau B, Waldeck J, Höltke C, Breyholz HJ, Wagner S, Kopka K, Heindel W, Schäfers M, Bremer C. Bioconjug Chem; 2008 May 06; 19(5):1001-8. PubMed ID: 18396900 [Abstract] [Full Text] [Related]
12. Quenched BODIPY dye-labeled casein substrates for the assay of protease activity by direct fluorescence measurement. Jones LJ, Upson RH, Haugland RP, Panchuk-Voloshina N, Zhou M, Haugland RP. Anal Biochem; 1997 Sep 05; 251(2):144-52. PubMed ID: 9299009 [Abstract] [Full Text] [Related]
13. Development of novel assays for proteolytic enzymes using rhodamine-based fluorogenic substrates. Grant SK, Sklar JG, Cummings RT. J Biomol Screen; 2002 Dec 05; 7(6):531-40. PubMed ID: 14599351 [Abstract] [Full Text] [Related]
14. Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore. Hennig A, Florea M, Roth D, Enderle T, Nau WM. Anal Biochem; 2007 Jan 15; 360(2):255-65. PubMed ID: 17134673 [Abstract] [Full Text] [Related]
15. Inhibition of membrane-type 1 matrix metalloproteinase by hydroxamate inhibitors: an examination of the subsite pocket. Yamamoto M, Tsujishita H, Hori N, Ohishi Y, Inoue S, Ikeda S, Okada Y. J Med Chem; 1998 Apr 09; 41(8):1209-17. PubMed ID: 9548812 [Abstract] [Full Text] [Related]
17. "One-step" detection of matrix metalloproteinase activity using a fluorogenic peptide probe-immobilized diagnostic kit. Ryu JH, Lee A, Lee S, Ahn CH, Park JW, Leary JF, Park S, Kim K, Kwon IC, Youn IC, Choi K. Bioconjug Chem; 2010 Jul 21; 21(7):1378-84. PubMed ID: 20575580 [Abstract] [Full Text] [Related]
18. Latent fluorophores based on a self-immolative linker strategy and suitable for protease sensing. Richard JA, Meyer Y, Jolivel V, Massonneau M, Dumeunier R, Vaudry D, Vaudry H, Renard PY, Romieu A. Bioconjug Chem; 2008 Aug 21; 19(8):1707-18. PubMed ID: 18642865 [Abstract] [Full Text] [Related]
19. Carbohydrate-lectin interaction assay by fluorescence correlation spectroscopy using fluorescence-labeled glycosylasparagines. Mizuno M. Methods Mol Biol; 2014 Aug 21; 1200():215-21. PubMed ID: 25117238 [Abstract] [Full Text] [Related]
20. Development of a novel fluorescent probe for fluorescence correlation spectroscopic detection of kinase inhibitors. Kawaguchi M, Terai T, Utata R, Kato M, Tsuganezawa K, Tanaka A, Kojima H, Okabe T, Nagano T. Bioorg Med Chem Lett; 2008 Jul 01; 18(13):3752-5. PubMed ID: 18524589 [Abstract] [Full Text] [Related] Page: [Next] [New Search]