These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 19397328
1. Enhanced long-term stability for single ion channel recordings using suspended poly(lipid) bilayers. Heitz BA, Xu J, Hall HK, Aspinwall CA, Saavedra SS. J Am Chem Soc; 2009 May 20; 131(19):6662-3. PubMed ID: 19397328 [Abstract] [Full Text] [Related]
2. Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids. Heitz BA, Xu J, Jones IW, Keogh JP, Comi TJ, Hall HK, Aspinwall CA, Saavedra SS. Langmuir; 2011 Mar 01; 27(5):1882-90. PubMed ID: 21226498 [Abstract] [Full Text] [Related]
3. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. Heitz BA, Jones IW, Hall HK, Aspinwall CA, Saavedra SS. J Am Chem Soc; 2010 May 26; 132(20):7086-93. PubMed ID: 20441163 [Abstract] [Full Text] [Related]
4. Photopolymerization of Dienoyl Lipids Creates Planar Supported Poly(lipid) Membranes with Retained Fluidity. Orosz KS, Jones IW, Keogh JP, Smith CM, Griffin KR, Xu J, Comi TJ, Hall HK, Saavedra SS. Langmuir; 2016 Feb 16; 32(6):1577-84. PubMed ID: 26794208 [Abstract] [Full Text] [Related]
5. Single-channel recordings of gramicidin at agarose-supported bilayer lipid membranes formed by the tip-dip and painting methods. Matsuno Y, Osono C, Hirano A, Sugawara M. Anal Sci; 2004 Aug 16; 20(8):1217-21. PubMed ID: 15352514 [Abstract] [Full Text] [Related]
6. Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development. Bright LK, Baker CA, Bränström R, Saavedra SS, Aspinwall CA. ACS Biomater Sci Eng; 2015 Aug 16; 1(10):955-963. PubMed ID: 26925461 [Abstract] [Full Text] [Related]
7. Amphiphobic Septa Enhance the Mechanical Stability of Free-Standing Bilayer Lipid Membranes. Yamaura D, Tadaki D, Araki S, Yoshida M, Arata K, Ohori T, Ishibashi KI, Kato M, Ma T, Miyata R, Yamamoto H, Tero R, Sakuraba M, Ogino T, Niwano M, Hirano-Iwata A. Langmuir; 2018 May 15; 34(19):5615-5622. PubMed ID: 29664647 [Abstract] [Full Text] [Related]
8. Micro- and nano-technologies for lipid bilayer-based ion-channel functional assays. Hirano-Iwata A, Ishinari Y, Yamamoto H, Niwano M. Chem Asian J; 2015 Jun 15; 10(6):1266-74. PubMed ID: 25702941 [Abstract] [Full Text] [Related]
9. Lipid bilayer-based sensors and biomolecular electronics. Tien HT, Salamon Z, Ottova A. Crit Rev Biomed Eng; 1991 Jun 15; 18(5):323-40. PubMed ID: 2036800 [Abstract] [Full Text] [Related]
10. Stabilized lipid film based biosensor for atenolol. Nikolelis DP, Mitrokotsa M. Biosens Bioelectron; 2002 Jun 15; 17(6-7):565-72. PubMed ID: 11959479 [Abstract] [Full Text] [Related]
11. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels. Phung T, Zhang Y, Dunlop J, Dalziel J. Biosens Bioelectron; 2011 Mar 15; 26(7):3127-35. PubMed ID: 21211957 [Abstract] [Full Text] [Related]
12. Biosensor for dopamine based on stabilized lipid films with incorporated resorcin[4]arene receptor. Nikolelis DP, Theoharis G. Bioelectrochemistry; 2003 Apr 15; 59(1-2):107-12. PubMed ID: 12699826 [Abstract] [Full Text] [Related]
13. Stable lipid bilayers based on micro- and nano-fabrication as a platform for recording ion-channel activities. Hirano-Iwata A, Oshima A, Mozumi H, Kimura Y, Niwano M. Anal Sci; 2012 Apr 15; 28(11):1049-57. PubMed ID: 23149604 [Abstract] [Full Text] [Related]
14. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels. Schulze Greiving VC, de Boer HL, Bomer JG, van den Berg A, Le Gac S. Electrophoresis; 2018 Feb 15; 39(3):496-503. PubMed ID: 29193178 [Abstract] [Full Text] [Related]
15. Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. Komiya M, Kato M, Tadaki D, Ma T, Yamamoto H, Tero R, Tozawa Y, Niwano M, Hirano-Iwata A. Chem Rec; 2020 Jul 15; 20(7):730-742. PubMed ID: 31944562 [Abstract] [Full Text] [Related]
16. Supported bilayers formed from different phospholipids on spherical silica substrates. Gopalakrishnan G, Rouiller I, Colman DR, Lennox RB. Langmuir; 2009 May 19; 25(10):5455-8. PubMed ID: 19382772 [Abstract] [Full Text] [Related]
17. Synthesis, characterization and properties of a new polymerisable surfactant: 12-methacryloyl dodecylphosphocholine. Seuring J, Reiss P, Koert U, Agarwal S. Chem Phys Lipids; 2010 May 19; 163(4-5):367-72. PubMed ID: 20223230 [Abstract] [Full Text] [Related]
18. Bilayer lipid membranes for flow injection monitoring of acetylcholine, urea, and penicillin. Nikolelis DP, Siontorou CG. Anal Chem; 1995 Mar 01; 67(5):936-44. PubMed ID: 7762829 [Abstract] [Full Text] [Related]
19. Electrochemical evaluation of chemical selectivity of glutamate receptor ion channel proteins with a multi-channel sensor. Sugawara M, Hirano A, Rehák M, Nakanishi J, Kawai K, Sato H, Umezawa Y. Biosens Bioelectron; 1997 Mar 01; 12(5):425-39. PubMed ID: 9228734 [Abstract] [Full Text] [Related]
20. Modulation of the conductance of a 2,2'-bipyridine-functionalized peptidic ion channel by Ni2+. Pilz CS, Steinem C. Eur Biophys J; 2008 Jul 01; 37(6):1065-71. PubMed ID: 18347789 [Abstract] [Full Text] [Related] Page: [Next] [New Search]