These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
409 related items for PubMed ID: 19399078
1. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Tanabe K, Nomura M, Guimard D, Iwamoto S, Arakawa Y. Opt Express; 2009 Apr 27; 17(9):7036-42. PubMed ID: 19399078 [Abstract] [Full Text] [Related]
2. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Lee A, Jiang Q, Tang M, Seeds A, Liu H. Opt Express; 2012 Sep 24; 20(20):22181-7. PubMed ID: 23037366 [Abstract] [Full Text] [Related]
3. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. Tanabe K, Guimard D, Bordel D, Iwamoto S, Arakawa Y. Opt Express; 2010 May 10; 18(10):10604-8. PubMed ID: 20588912 [Abstract] [Full Text] [Related]
4. Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers. Li F, Mi Z. Opt Express; 2009 Oct 26; 17(22):19933-9. PubMed ID: 19997217 [Abstract] [Full Text] [Related]
5. Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities. Tawara T, Kamada H, Zhang YH, Tanabe T, Cade NI, Ding D, Johnson SR, Gotoh H, Kuramochi E, Notomi M, Sogawa T. Opt Express; 2008 Apr 14; 16(8):5199-205. PubMed ID: 18542622 [Abstract] [Full Text] [Related]
6. Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light. Bordas F, Seassal C, Dupuy E, Regreny P, Gendry M, Viktorovitch P, Steel MJ, Rahmani A. Opt Express; 2009 Mar 30; 17(7):5439-45. PubMed ID: 19333310 [Abstract] [Full Text] [Related]
7. Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon. Yang J, Bhattacharya P. Opt Express; 2008 Mar 31; 16(7):5136-40. PubMed ID: 18542613 [Abstract] [Full Text] [Related]
9. Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires. Martínez LJ, Alén B, Prieto I, Fuster D, González L, González Y, Dotor ML, Postigo PA. Opt Express; 2009 Aug 17; 17(17):14993-5000. PubMed ID: 19687977 [Abstract] [Full Text] [Related]
10. Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics. Fegadolli WS, Kim SH, Postigo PA, Scherer A. Opt Lett; 2013 Nov 15; 38(22):4656-8. PubMed ID: 24322098 [Abstract] [Full Text] [Related]
11. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser. Djie HS, Ooi BS, Fang XM, Wu Y, Fastenau JM, Liu WK, Hopkinson M. Opt Lett; 2007 Jan 01; 32(1):44-6. PubMed ID: 17167578 [Abstract] [Full Text] [Related]
12. Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides. Tian Z, Veerasubramanian V, Bianucci P, Mukherjee S, Mi Z, Kirk AG, Plant DV. Opt Express; 2011 Jun 20; 19(13):12164-71. PubMed ID: 21716453 [Abstract] [Full Text] [Related]
13. InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well. Fu Y, Wang SM, Ferdos F, Sadeghi M, Larsson A. J Nanosci Nanotechnol; 2002 Jun 20; 2(3-4):421-6. PubMed ID: 12908273 [Abstract] [Full Text] [Related]
14. High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability. Cao Y, Ji H, Xu P, Gu Y, Ma W, Yang T. Opt Lett; 2012 Oct 01; 37(19):4071-3. PubMed ID: 23027282 [Abstract] [Full Text] [Related]
15. High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Toishi M, Englund D, Faraon A, Vucković J. Opt Express; 2009 Aug 17; 17(17):14618-26. PubMed ID: 19687940 [Abstract] [Full Text] [Related]
16. 1.3 microm quantum dot laser in coupled-cavity-injection-grating design with bandwidth of 20 GHz under direct modulation. Gerschütz F, Fischer M, Koeth J, Krestnikov I, Kovsh A, Schilling C, Kaiser W, Höfling S, Forchel A. Opt Express; 2008 Apr 14; 16(8):5596-601. PubMed ID: 18542663 [Abstract] [Full Text] [Related]
17. Nanolasers grown on silicon-based MOSFETs. Lu F, Tran TT, Ko WS, Ng KW, Chen R, Chang-Hasnain C. Opt Express; 2012 May 21; 20(11):12171-6. PubMed ID: 22714204 [Abstract] [Full Text] [Related]
18. GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating. Shindo T, Okumura T, Ito H, Koguchi T, Takahashi D, Atsumi Y, Kang J, Osabe R, Amemiya T, Nishiyama N, Arai S. Opt Express; 2011 Jan 31; 19(3):1884-91. PubMed ID: 21369003 [Abstract] [Full Text] [Related]
19. Low density InAs/(In)GaAs quantum dots emitting at long wavelengths. Trevisi G, Seravalli L, Frigeri P, Franchi S. Nanotechnology; 2009 Oct 14; 20(41):415607. PubMed ID: 19762951 [Abstract] [Full Text] [Related]
20. Strong extinction of a far-field laser beam by a single quantum dot. Vamivakas AN, Atatüre M, Dreiser J, Yilmaz ST, Badolato A, Swan AK, Goldberg BB, Imamoglu A, Unlü MS. Nano Lett; 2007 Sep 14; 7(9):2892-6. PubMed ID: 17691853 [Abstract] [Full Text] [Related] Page: [Next] [New Search]