These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 19402139

  • 1. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior.
    Munoz-Pinto DJ, Bulick AS, Hahn MS.
    J Biomed Mater Res A; 2009 Jul; 90(1):303-16. PubMed ID: 19402139
    [Abstract] [Full Text] [Related]

  • 2. Inorganic-organic hybrid scaffolds for osteochondral regeneration.
    Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS.
    J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006
    [Abstract] [Full Text] [Related]

  • 3. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L, Seliktar D.
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [Abstract] [Full Text] [Related]

  • 4. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype.
    Liao H, Munoz-Pinto D, Qu X, Hou Y, Grunlan MA, Hahn MS.
    Acta Biomater; 2008 Sep; 4(5):1161-71. PubMed ID: 18515199
    [Abstract] [Full Text] [Related]

  • 5. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype.
    Adelöw C, Segura T, Hubbell JA, Frey P.
    Biomaterials; 2008 Jan; 29(3):314-26. PubMed ID: 17953986
    [Abstract] [Full Text] [Related]

  • 6. Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size.
    Browning MB, Wilems T, Hahn M, Cosgriff-Hernandez E.
    J Biomed Mater Res A; 2011 Aug; 98(2):268-73. PubMed ID: 21626658
    [Abstract] [Full Text] [Related]

  • 7. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D, Bianco-Peled H, Seliktar D.
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [Abstract] [Full Text] [Related]

  • 8. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA, Moon JJ, West JL.
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [Abstract] [Full Text] [Related]

  • 9. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M, Oss-Ronen L, Seliktar D.
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [Abstract] [Full Text] [Related]

  • 10. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M, Wu BM, Dunn JC.
    J Biomed Mater Res A; 2008 Dec 15; 87(4):1010-6. PubMed ID: 18257081
    [Abstract] [Full Text] [Related]

  • 11. The influence of ascorbic acid, TGF-beta1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG-fibrinogen constructs.
    Kim PD, Peyton SR, VanStrien AJ, Putnam AJ.
    Biomaterials; 2009 Aug 15; 30(23-24):3854-64. PubMed ID: 19443026
    [Abstract] [Full Text] [Related]

  • 12. Probing vocal fold fibroblast response to hyaluronan in 3D contexts.
    Munoz-Pinto DJ, Jimenez-Vergara AC, Gelves LM, McMahon RE, Guiza-Arguello V, Hahn MS.
    Biotechnol Bioeng; 2009 Nov 01; 104(4):821-31. PubMed ID: 19718686
    [Abstract] [Full Text] [Related]

  • 13. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP, Allen AC, Chen TM, Miller JS, West JL.
    Biomaterials; 2010 Jul 01; 31(21):5491-7. PubMed ID: 20447685
    [Abstract] [Full Text] [Related]

  • 14. Smooth muscle alpha-actin and calponin expression and extracellular matrix production of human coronary artery smooth muscle cells in 3D scaffolds.
    Grenier S, Sandig M, Mequanint K.
    Tissue Eng Part A; 2009 Oct 01; 15(10):3001-11. PubMed ID: 19323608
    [Abstract] [Full Text] [Related]

  • 15. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM, Cole AA, Bjugstad KB, Mahoney MJ.
    Acta Biomater; 2009 Jul 01; 5(6):1884-97. PubMed ID: 19250891
    [Abstract] [Full Text] [Related]

  • 16. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold.
    Kim BS, Nikolovski J, Bonadio J, Smiley E, Mooney DJ.
    Exp Cell Res; 1999 Sep 15; 251(2):318-28. PubMed ID: 10471317
    [Abstract] [Full Text] [Related]

  • 17. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production.
    Bryant SJ, Bender RJ, Durand KL, Anseth KS.
    Biotechnol Bioeng; 2004 Jun 30; 86(7):747-55. PubMed ID: 15162450
    [Abstract] [Full Text] [Related]

  • 18. Cell adhesion on poly(propylene fumarate-co-ethylene glycol) hydrogels.
    Tanahashi K, Mikos AG.
    J Biomed Mater Res; 2002 Dec 15; 62(4):558-66. PubMed ID: 12221704
    [Abstract] [Full Text] [Related]

  • 19. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
    Kutty JK, Cho E, Soo Lee J, Vyavahare NR, Webb K.
    Biomaterials; 2007 Nov 15; 28(33):4928-38. PubMed ID: 17720239
    [Abstract] [Full Text] [Related]

  • 20. Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue.
    Patel PN, Smith CK, Patrick CW.
    J Biomed Mater Res A; 2005 Jun 01; 73(3):313-9. PubMed ID: 15834933
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.