These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
220 related items for PubMed ID: 19402139
21. Hydrogel-electrospun mesh composites for coronary artery bypass grafts. McMahon RE, Qu X, Jimenez-Vergara AC, Bashur CA, Guelcher SA, Goldstein AS, Hahn MS. Tissue Eng Part C Methods; 2011 Apr; 17(4):451-61. PubMed ID: 21083438 [Abstract] [Full Text] [Related]
22. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM, Bryant SJ. Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [Abstract] [Full Text] [Related]
23. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation. Poon YF, Cao Y, Liu Y, Chan V, Chan-Park MB. ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698 [Abstract] [Full Text] [Related]
24. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Sokic S, Christenson M, Larson J, Papavasiliou G. Macromol Biosci; 2014 May; 14(5):731-9. PubMed ID: 24443002 [Abstract] [Full Text] [Related]
26. Fragment size- and dose-specific effects of hyaluronan on matrix synthesis by vascular smooth muscle cells. Joddar B, Ramamurthi A. Biomaterials; 2006 May; 27(15):2994-3004. PubMed ID: 16457881 [Abstract] [Full Text] [Related]
27. Effect of crosslinking density on swelling and mechanical properties of PEGDA400/PCLTMA900 hydrogels. Metz J, Gonnerman K, Chu A, Chu TM. Biomed Sci Instrum; 2006 May; 42():389-94. PubMed ID: 16817639 [Abstract] [Full Text] [Related]
28. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell JA, Lutolf MP, Rizzi SC. Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983 [Abstract] [Full Text] [Related]
29. Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth. Lee BH, Tin SP, Chaw SY, Cao Y, Xia Y, Steele TW, Seliktar D, Bianco-Peled H, Venkatraman SS. J Biomater Sci Polym Ed; 2014 Nov; 25(4):394-409. PubMed ID: 24304216 [Abstract] [Full Text] [Related]
30. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Peyton SR, Kim PD, Ghajar CM, Seliktar D, Putnam AJ. Biomaterials; 2008 Jun; 29(17):2597-607. PubMed ID: 18342366 [Abstract] [Full Text] [Related]
31. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. Kim MS, Choi YJ, Noh I, Tae G. J Biomed Mater Res A; 2007 Dec 01; 83(3):674-82. PubMed ID: 17530630 [Abstract] [Full Text] [Related]
32. The influence of RGD-bearing hydrogels on the re-expression of contractile vascular smooth muscle cell phenotype. Beamish JA, Fu AY, Choi AJ, Haq NA, Kottke-Marchant K, Marchant RE. Biomaterials; 2009 Sep 01; 30(25):4127-35. PubMed ID: 19481795 [Abstract] [Full Text] [Related]
33. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F, Li Z, Lannutti JL, Wagner WR, Guan J. Acta Biomater; 2009 Oct 01; 5(8):2901-12. PubMed ID: 19433136 [Abstract] [Full Text] [Related]
34. Tetronic(®)-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications. Sivaraman S, Ostendorff R, Fleishman B, Nagatomi J. J Biomater Sci Polym Ed; 2015 Oct 01; 26(3):196-210. PubMed ID: 25495917 [Abstract] [Full Text] [Related]
35. Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels. Munoz-Pinto DJ, Jimenez-Vergara AC, Hou Y, Hayenga HN, Rivas A, Grunlan M, Hahn MS. Tissue Eng Part A; 2012 Aug 01; 18(15-16):1710-9. PubMed ID: 22519299 [Abstract] [Full Text] [Related]
36. Fabrication and characterization of porous EH scaffolds and EH-PEG bilayers. Falco EE, Coates EE, Li E, Roth JS, Fisher JP. J Biomed Mater Res A; 2011 Jun 01; 97(3):264-71. PubMed ID: 21442727 [Abstract] [Full Text] [Related]
37. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Kim J, Lee KW, Hefferan TE, Currier BL, Yaszemski MJ, Lu L. Biomacromolecules; 2008 Jan 01; 9(1):149-57. PubMed ID: 18072747 [Abstract] [Full Text] [Related]
38. 3D patterned substrates for bioartificial blood vessels - The effect of hydrogels on aligned cells on a biomaterial surface. Zhao X, Irvine SA, Agrawal A, Cao Y, Lim PQ, Tan SY, Venkatraman SS. Acta Biomater; 2015 Oct 01; 26():159-168. PubMed ID: 26297885 [Abstract] [Full Text] [Related]
39. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmüller H, Müller R, Weber FE, Hubbell JA. Biomacromolecules; 2006 Nov 01; 7(11):3019-29. PubMed ID: 17096527 [Abstract] [Full Text] [Related]
40. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127. Lin CH, Lin WC, Yang MC. Colloids Surf B Biointerfaces; 2009 Jun 01; 71(1):36-44. PubMed ID: 19188049 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]