These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 1940584

  • 1. Evaluation of the role of reactive oxygen species in doxorubicin hydrochloride nephrosis.
    Bertolatus JA, Klinzman D, Bronsema DA, Ridnour L, Oberley LW.
    J Lab Clin Med; 1991 Nov; 118(5):435-45. PubMed ID: 1940584
    [Abstract] [Full Text] [Related]

  • 2. Role of oxygen radicals in adriamycin-induced nephrosis.
    Wu SH, Yang YC, Wang ZM.
    Chin Med J (Engl); 1990 Apr; 103(4):283-9. PubMed ID: 2118039
    [Abstract] [Full Text] [Related]

  • 3. [Relationship between glomerular nephrin expression and oxidative stress reaction in rats with adriamycin-induced nephrosis].
    Zhu Y, Lu L.
    Zhongguo Dang Dai Er Ke Za Zhi; 2009 Jan; 11(1):56-60. PubMed ID: 19149925
    [Abstract] [Full Text] [Related]

  • 4. Amelioration of glomerular injury in doxorubicin hydrochloride nephrosis by dimethylthiourea.
    Milner LS, Wei SH, Houser MT.
    J Lab Clin Med; 1991 Nov; 118(5):427-34. PubMed ID: 1658168
    [Abstract] [Full Text] [Related]

  • 5. Glomerular epithelial detachment, not reduced charge density, correlates with proteinuria in adriamycin and puromycin nephrosis.
    Whiteside C, Prutis K, Cameron R, Thompson J.
    Lab Invest; 1989 Dec; 61(6):650-60. PubMed ID: 2601299
    [Abstract] [Full Text] [Related]

  • 6. Increased glomerular thromboxane synthesis as a possible cause of proteinuria in experimental nephrosis.
    Remuzzi G, Imberti L, Rossini M, Morelli C, Carminati C, Cattaneo GM, Bertani T.
    J Clin Invest; 1985 Jan; 75(1):94-101. PubMed ID: 4038407
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Renal vasoconstriction induced by oxidized LDL is inhibited by scavengers of reactive oxygen species and L-arginine.
    Rahman MM, Varghese Z, Fuller BJ, Moorhead JF.
    Clin Nephrol; 1999 Feb; 51(2):98-107. PubMed ID: 10069645
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effect of oxygen derived free radicals and glycine on sodium-potassium adenosine triphosphatase in the basolateral membrane of the kidney in ischemia-reperfusion.
    Zakaria FA.
    Saudi Med J; 2002 Nov; 23(11):1380-5. PubMed ID: 12506300
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The inhibitory action of oxygen radical scavengers on proteinuria and glomerular heparan sulphate loss in the isolated perfused kidney.
    Tay M, Comper WD, Vassiliou P, Glasgow EF, Baker MS, Pratt L.
    Biochem Int; 1990 Nov; 20(4):767-78. PubMed ID: 2141255
    [Abstract] [Full Text] [Related]

  • 15. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells.
    Thamilselvan S, Byer KJ, Hackett RL, Khan SR.
    J Urol; 2000 Jul; 164(1):224-9. PubMed ID: 10840464
    [Abstract] [Full Text] [Related]

  • 16. Glomerular sclerosis in nephrotic rats. Comparison of the long-term effects of adriamycin and aminonucleoside.
    Grond J, Weening JJ, Elema JD.
    Lab Invest; 1984 Sep; 51(3):277-85. PubMed ID: 6471809
    [Abstract] [Full Text] [Related]

  • 17. Modulation of oxidant lung injury by using liposome-entrapped superoxide dismutase and catalase.
    Freeman BA, Turrens JF, Mirza Z, Crapo JD, Young SL.
    Fed Proc; 1985 Jul; 44(10):2591-5. PubMed ID: 4007180
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.