These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 19409406

  • 1. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine.
    Kim S, Kim D, Pollack GM, Collins LB, Rusyn I.
    Toxicol Appl Pharmacol; 2009 Jul 01; 238(1):90-9. PubMed ID: 19409406
    [Abstract] [Full Text] [Related]

  • 2. Liquid chromatography electrospray ionization tandem mass spectrometry analysis method for simultaneous detection of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine.
    Kim S, Collins LB, Boysen G, Swenberg JA, Gold A, Ball LM, Bradford BU, Rusyn I.
    Toxicology; 2009 Aug 21; 262(3):230-8. PubMed ID: 19549554
    [Abstract] [Full Text] [Related]

  • 3. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: liver effects.
    Yoo HS, Bradford BU, Kosyk O, Shymonyak S, Uehara T, Collins LB, Bodnar WM, Ball LM, Gold A, Rusyn I.
    J Toxicol Environ Health A; 2015 Aug 21; 78(1):15-31. PubMed ID: 25424544
    [Abstract] [Full Text] [Related]

  • 4. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects.
    Yoo HS, Bradford BU, Kosyk O, Uehara T, Shymonyak S, Collins LB, Bodnar WM, Ball LM, Gold A, Rusyn I.
    J Toxicol Environ Health A; 2015 Aug 21; 78(1):32-49. PubMed ID: 25424545
    [Abstract] [Full Text] [Related]

  • 5. Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse.
    Luo YS, Furuya S, Chiu W, Rusyn I.
    J Toxicol Environ Health A; 2018 Aug 21; 81(1-3):37-52. PubMed ID: 29190187
    [Abstract] [Full Text] [Related]

  • 6. Bioactivation of trichloroethylene to three regioisomeric glutathione conjugates by liver fractions and recombinant human glutathione transferases: Species differences and implications for human risk assessment.
    Capinha L, Jennings P, Commandeur JNM.
    Toxicol Lett; 2021 May 01; 341():94-106. PubMed ID: 33539969
    [Abstract] [Full Text] [Related]

  • 7. A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice.
    Abbas R, Fisher JW.
    Toxicol Appl Pharmacol; 1997 Nov 01; 147(1):15-30. PubMed ID: 9356303
    [Abstract] [Full Text] [Related]

  • 8. Species differences in the metabolism of trichloroethylene to the carcinogenic metabolites trichloroacetate and dichloroacetate.
    Larson JL, Bull RJ.
    Toxicol Appl Pharmacol; 1992 Aug 01; 115(2):278-85. PubMed ID: 1641861
    [Abstract] [Full Text] [Related]

  • 9. Mutagenicity of trichloroethylene and its metabolites: implications for the risk assessment of trichloroethylene.
    Moore MM, Harrington-Brock K.
    Environ Health Perspect; 2000 May 01; 108 Suppl 2(Suppl 2):215-23. PubMed ID: 10807553
    [Abstract] [Full Text] [Related]

  • 10. Analytical methods impact estimates of trichloroethylene's glutathione conjugation and risk assessment.
    Zhang F, Marty S, Budinsky R, Bartels M, Pottenger LH, Bus J, Bevan C, Erskine T, Clark A, Holzheuer B, Markham D.
    Toxicol Lett; 2018 Oct 15; 296():82-94. PubMed ID: 30081224
    [Abstract] [Full Text] [Related]

  • 11. Physiologically based pharmacokinetic modeling with trichloroethylene and its metabolite, trichloroacetic acid, in the rat and mouse.
    Fisher JW, Gargas ML, Allen BC, Andersen ME.
    Toxicol Appl Pharmacol; 1991 Jun 15; 109(2):183-95. PubMed ID: 2068722
    [Abstract] [Full Text] [Related]

  • 12. Transcriptomic-based evaluation of trichloroethylene glutathione and cysteine conjugates demonstrate phenotype-dependent stress responses in a panel of human in vitro models.
    Capinha L, Zhang Y, Holzer AK, Ückert AK, Zana M, Carta G, Murphy C, Baldovini J, Mazidi Z, Grillari J, Dinnyes A, van de Water B, Leist M, Commandeur JNM, Jennings P.
    Arch Toxicol; 2023 Feb 15; 97(2):523-545. PubMed ID: 36576512
    [Abstract] [Full Text] [Related]

  • 13. The extent of dichloroacetate formation from trichloroethylene, chloral hydrate, trichloroacetate, and trichloroethanol in B6C3F1 mice.
    Merdink JL, Gonzalez-Leon A, Bull RJ, Schultz IR.
    Toxicol Sci; 1998 Sep 15; 45(1):33-41. PubMed ID: 9848108
    [Abstract] [Full Text] [Related]

  • 14. Exposure to cis- and trans-regioisomers of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-glutathione result in quantitatively and qualitatively different cellular effects in RPTEC/TERT1 cells.
    Capinha L, Jennings P, Commandeur JNM.
    Toxicol Lett; 2023 Jul 01; 383():75-88. PubMed ID: 37353095
    [Abstract] [Full Text] [Related]

  • 15. Effect of trichloroethylene and its metabolites, dichloroacetic acid and trichloroacetic acid, on the methylation and expression of c-Jun and c-Myc protooncogenes in mouse liver: prevention by methionine.
    Tao L, Yang S, Xie M, Kramer PM, Pereira MA.
    Toxicol Sci; 2000 Apr 01; 54(2):399-407. PubMed ID: 10774822
    [Abstract] [Full Text] [Related]

  • 16. Physiologically based pharmacokinetic modeling of inhaled trichloroethylene and its oxidative metabolites in B6C3F1 mice.
    Greenberg MS, Burton GA, Fisher JW.
    Toxicol Appl Pharmacol; 1999 Feb 01; 154(3):264-78. PubMed ID: 9931286
    [Abstract] [Full Text] [Related]

  • 17. Changes in gene expression in human renal proximal tubule cells exposed to low concentrations of S-(1,2-dichlorovinyl)-l-cysteine, a metabolite of trichloroethylene.
    Lock EA, Barth JL, Argraves SW, Schnellmann RG.
    Toxicol Appl Pharmacol; 2006 Oct 15; 216(2):319-30. PubMed ID: 16844155
    [Abstract] [Full Text] [Related]

  • 18. Study on the cytochrome P-450- and glutathione-dependent biotransformation of trichloroethylene in humans.
    Bloemen LJ, Monster AC, Kezic S, Commandeur JN, Veulemans H, Vermeulen NP, Wilmer JW.
    Int Arch Occup Environ Health; 2001 Mar 15; 74(2):102-8. PubMed ID: 11317702
    [Abstract] [Full Text] [Related]

  • 19. Consideration of the target organ toxicity of trichloroethylene in terms of metabolite toxicity and pharmacokinetics.
    Davidson IW, Beliles RP.
    Drug Metab Rev; 1991 Mar 15; 23(5-6):493-599. PubMed ID: 1802654
    [Abstract] [Full Text] [Related]

  • 20. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver.
    Herren-Freund SL, Pereira MA, Khoury MD, Olson G.
    Toxicol Appl Pharmacol; 1987 Sep 15; 90(2):183-9. PubMed ID: 3629594
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.