These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 19416548
1. CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units. Liu Y, Maskell DL, Schmidt B. BMC Res Notes; 2009 May 06; 2():73. PubMed ID: 19416548 [Abstract] [Full Text] [Related]
2. CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions. Liu Y, Schmidt B, Maskell DL. BMC Res Notes; 2010 Apr 06; 3():93. PubMed ID: 20370891 [Abstract] [Full Text] [Related]
3. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. Liu Y, Wirawan A, Schmidt B. BMC Bioinformatics; 2013 Apr 04; 14():117. PubMed ID: 23557111 [Abstract] [Full Text] [Related]
4. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. Manavski SA, Valle G. BMC Bioinformatics; 2008 Mar 26; 9 Suppl 2(Suppl 2):S10. PubMed ID: 18387198 [Abstract] [Full Text] [Related]
5. Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled GPUs. Huang LT, Wu CC, Lai LF, Li YJ. Biomed Res Int; 2015 Mar 26; 2015():185179. PubMed ID: 26339591 [Abstract] [Full Text] [Related]
6. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda. Wang S, Kim J, Jiang X, Brunner SF, Ohno-Machado L. BMC Med Genomics; 2014 Mar 26; 7 Suppl 1(Suppl 1):S9. PubMed ID: 25077821 [Abstract] [Full Text] [Related]
7. Speeding-up Bioinformatics Algorithms with Heterogeneous Architectures: Highly Heterogeneous Smith-Waterman (HHeterSW). Gálvez S, Ferusic A, Esteban FJ, Hernández P, Caballero JA, Dorado G. J Comput Biol; 2016 Oct 26; 23(10):801-9. PubMed ID: 27104636 [Abstract] [Full Text] [Related]
8. CUDA-BLASTP: accelerating BLASTP on CUDA-enabled graphics hardware. Liu W, Schmidt B, Müller-Wittig W. IEEE/ACM Trans Comput Biol Bioinform; 2011 Oct 26; 8(6):1678-84. PubMed ID: 21339531 [Abstract] [Full Text] [Related]
9. SWPS3 - fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2. Szalkowski A, Ledergerber C, Krähenbühl P, Dessimoz C. BMC Res Notes; 2008 Oct 29; 1():107. PubMed ID: 18959793 [Abstract] [Full Text] [Related]
10. GPU-accelerated protein sequence alignment. Hasan L, Kentie M, Al-Ars Z. Annu Int Conf IEEE Eng Med Biol Soc; 2011 Oct 29; 2011():2442-6. PubMed ID: 22254835 [Abstract] [Full Text] [Related]
11. ADEPT: a domain independent sequence alignment strategy for gpu architectures. Awan MG, Deslippe J, Buluc A, Selvitopi O, Hofmeyr S, Oliker L, Yelick K. BMC Bioinformatics; 2020 Sep 15; 21(1):406. PubMed ID: 32933482 [Abstract] [Full Text] [Related]
12. SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences. Rucci E, Garcia C, Botella G, De Giusti A, Naiouf M, Prieto-Matias M. BMC Syst Biol; 2018 Nov 20; 12(Suppl 5):96. PubMed ID: 30458766 [Abstract] [Full Text] [Related]
13. GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme. Lee ST, Lin CY, Hung CL. Biomed Res Int; 2013 Nov 20; 2013():721738. PubMed ID: 23653898 [Abstract] [Full Text] [Related]
14. DOPA: GPU-based protein alignment using database and memory access optimizations. Hasan L, Kentie M, Al-Ars Z. BMC Res Notes; 2011 Jul 28; 4():261. PubMed ID: 21798061 [Abstract] [Full Text] [Related]
15. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation. Rognes T. BMC Bioinformatics; 2011 Jun 01; 12():221. PubMed ID: 21631914 [Abstract] [Full Text] [Related]
16. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System. Liu Y, Hong Y, Lin CY, Hung CL. Int J Genomics; 2015 Jun 01; 2015():761063. PubMed ID: 26568953 [Abstract] [Full Text] [Related]
17. Accelerating the Smith-Waterman algorithm with interpair pruning and band optimization for the all-pairs comparison of base sequences. Okada D, Ino F, Hagihara K. BMC Bioinformatics; 2015 Oct 06; 16():321. PubMed ID: 26445214 [Abstract] [Full Text] [Related]
18. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU. Jiang H, Ganesan N. BMC Bioinformatics; 2016 Feb 27; 17():106. PubMed ID: 26920848 [Abstract] [Full Text] [Related]
19. Coupling SIMD and SIMT architectures to boost performance of a phylogeny-aware alignment kernel. Alachiotis N, Berger SA, Stamatakis A. BMC Bioinformatics; 2012 Aug 09; 13():196. PubMed ID: 22876807 [Abstract] [Full Text] [Related]
20. Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm. Khaled H, Faheem Hel D, El Gohary R. Int J Data Min Bioinform; 2015 Aug 09; 12(3):313-27. PubMed ID: 26510289 [Abstract] [Full Text] [Related] Page: [Next] [New Search]